
LA-UR-12-25760
Approved for public release; distribution is unlimited.

Title: Final Reports from the Los Alamos National Laboratory Computational
Physics Student Summer Workshop

Author(s): Runnels, Scott R.
Amelang, Jeffrey S.
Ingraham, Daniel J.
Jemison, Matthew B.
McDermott, Danielle M.
Pusateri, Elise N.
Wang, Matthew Y.
David, Sean
Hoey, William
Lung, Tyler
Marcath, Matthew
Matern, William
Melvin, Jeremy
Miller, Sean
Shaner, Samuel
Smith, Jeffrey
Snyder, Evan
Trettel, Ben
Winters, Andrew

Intended for: To provide a record of workshop accomplishments and to use in
promoting the workshop.
Report

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Final Reports

From the

Los Alamos National Laboratory
Computational Physics Student
Summer Workshop

Assembled by: Scott R. Runnels, Ph.D.

Workshop Coordinator and
University Liaison for LANL’s Advanced
Scientific Computing Program

Included in this Report

(1) Background Information

Philosophy of the Workshop
Funding and Participation Profile
Lecture Schedule

(2) Student Reports

Table of Contents

Background (Scott Runnels)

Philosophy of the Workshop 4
Funding and Participation Profile 5
Lecture Schedule 6

Student Reports by Project

Capturing Material Discontinuities and GPU Programming
(Bob Robey, mentor)

“Numerically Tracking Contact Discontinuities” 11
Sean Davis and Will Matern

Methods Supporting Multi-Material Cell Calculations
(Misha Shashkov, mentor)

“Moment of Fluid Interface Reconstruction with Increased 20
Sub-gridcell Resolution, Part I”, Matthew Jemison

“Moment of Fluid Interface Reconstruction with Increased 43
Sub-gridcell Resolution, Part II”, Andrew Winters

Advanced Cell-Centered Hydro Methods
(Nathaniel Morgan, mentor)

“Report on an FCT Method with Vorticity Control” 81
Tyler Lung

“Validation of Two Hydrocodes with a Bi-Metallic Shaped 98
Charge Experiment”, Daniel Ingraham

Rad-Hydro Verification
(Scott Ramsey, mentor)

“Development and Implementation of Radiation-Hydrodynamics 123
Verification Test Problems”, Matthew Marcath and Matthew Wang

EMP Simulations
(Heidi Tierney, mentor)

“Electromagnetic Pulse Simulations – Swarm Electron Time Delay 192
in Thunderstorm Environment”, Elise Pusateri and Evan Snyder

Grain Boundary Formation Simulation
(Cynthia Reichhardt, mentor)

“Pattern Formation in a 2D Colloid System” 213
Danielle McDermott and Jeffrey Amelang

Turbulent Mixing
(Rob Gore, mentor)

“Turbulent modeling of a plane mixing layer” 226
Jeffrey Smith
“RANS modeling of RTI and HVDT with BHR3”, 245
Ben Trettel

Development of an ICF Mix Code
(Erik Vold, mentor)

“Development of ICF Mix Code”, 268
Jeremy A. Melvin and Sean T. Miller

Verification of Shocks in Plasmas
(Tom Masser, mentor)

“Verification of Planar Shocks through Dense Plasma” 290
William A. Hoey
“Verification Study of Planar Shocks in Dense Plasmas” 305
Samuel Shaner

2012 Computational Physics Student Summer Workshop: Final Reports

Background

Philosophy of the Workshop

The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1)
To educate graduate and exceptional undergraduate students in the challenges and
applications of computational physics of interest to LANL, and (2) Entice their interest toward
those challenges. Computational physics is emerging as a discipline in its own right, combining
expertise in mathematics, physics, and computer science. The mathematical aspects focus on
numerical methods for solving equations on the computer as well as developing test problems
with analytical solutions. The physics aspects are very broad, ranging from low-temperature
material modeling to extremely high temperature plasma physics, radiation transport and
neutron transport. The computer science issues are concerned with matching numerical
algorithms to emerging architectures and maintaining the quality of extremely large codes built
to achieve multi-physics calculations. Although graduate programs associated with
computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-
disciplinary field is relatively small and is typically not focused on the aspects that are of primary
interest to LANL. Furthermore, more structured foundations for LANL interaction with
universities in computational physics is needed; currently interactions rely almost solely on
individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer
Workshop is to build an educational network of LANL researchers, university professors, and
emerging students to advance the field and LANL’s involvement in it.

This was the second year for the Summer Workshop. Like the previous year, the workshop’s
goals were achieved by bringing into LANL a select group of students recruited from across the
United States and immersing them for ten weeks in lectures and interesting research projects.
The lectures provided an overview of the computational physics topics of interest this year along
with some detailed instruction while the projects gave the students a positive experience
accomplishing technical goals. Each team consisted of two students working under one or
more mentors from LANL on specific research projects associated with predefined topics. This
year, the topics were on verification of simulations in plasma and radiation-hydrodynamics
codes, hypervelocity material deformation, plasma physics, graphical processor unit (“GPU”)
programming, multi-material mixing, turbulence modeling, computational material science, and
electromagnetic pulse simulations.

The students’ growth was furthered by their participation on teams where their teammates were
sometimes of different academic rank. It also developed them by requiring them to produce
written and oral reports that they presented to peers, mentors, and management.

2012 Computational Physics Student Summer Workshop: Final Reports

Funding and Participation Profile

LANL Staff

The Advanced Scientific Computing (ASC) Program at Los Alamos National Laboratory, under
charge code JPDJ, sponsors the Summer Workshop by funding the workshop coordinator,
paying for the lease at the University of New Mexico – Los Alamos campus, and also funding
twelve of the eighteen students. The remaining six students were funded by various projects
(some of them under ASC and some not), as shown below. This year, there were nine mentors,
up from six the previous year. Also, while last year’s mentors were almost solely in XCP,
participation this year spread to include mentors from XTD, T, and CCS. This broad
participation is welcome and it is hoped that it continues in future years. The details of the
funding and divisional participation are summarized below.

Charge Code JPDJ (ASC Sponsoring Code):

Capturing Material Discontinuities and GPU Programming (Robey, XCP-2)
Development of ICF Mix Code (Vold, XCP-2)
Rad-Hydro Verification Test Problems (Ramsey, XCP-8)
Methods Supporting Multi-Material Cell Calculations (Shashkov, XCP-4)
Grain Boundary Formation Simulation (Reichhardt, T-1)
Verification Study of Planar Shocks in Dense Plasmas (Masser, CCS-2)

Charge Code J466:

Electromagnetic Pulse Simulations (Tierney, XCP-6)

Charge Code J444:

Turbulent Mixing (Gore, XTD-6)

Charge Code X96H:

Advanced Cell-Centered Hydro Methods (Morgan, XCP-8)

Students

Forty-one students applied for admission to the workshop, all eligible U.S. citizens with the
breakdown shown in the chart below. The eighteen that ultimately were selected and
participated were from the following schools: Caltech, San Diego State, Notre Dame, University
of Toledo, Florida State, University of Michigan, University of New Hampshire, Stony Brook
State University of New York, University of Washington, RPI, MIT, University of Toledo, UCLA,
University of Maryland, and Middle Tennessee State. Their rank breakdown is also shown in
the chart below.

2012 Computational Physics Student Summer Workshop: Final Reports

Chart showing the academic rank breakdown of the applicant pool and the ultimate
participants. G1 means “1st year graduate student.” G2 means “2nd year graduate
student,” and so on.

Lecture Schedule

The workshop coordinator and participants greatly appreciated the contributions made by
several lecturers, including some from outside LANL. The lectures were scheduled so the
students could obtain the most benefit from them. Specifically, they were most frequent in the
beginning of the workshop, when the students’ research was just getting started and they
needed the most background information. Then, their frequency dropped dramatically and
finally to no lectures towards the end so the students could complete their research without
interruption. The lectures given and an image of the lecture schedule follow on the next two
pages.

0

1

2

3

4

5

6

7

8

Applied

Accepted and
Participated

2012 Computational Physics Student Summer Workshop: Final Reports

Name Affiliation Topic Length in

hours
Scott Runnels LANL Intro. to C++ 2

Intro. to Grid Data Structures 1
Intro. to Hydro Terminology 1
Diffusion on Two Grids 1
Intro. to Artificial Viscosity 1

Erik Vold LANL Computational Transport 2
Bob Robey LANL Parallelism: MPI & GPUs 1
Nathaniel Morgan LANL Intro. to Lagrange Hydro 1

Lagrange SGH in r-z 1
Intro. to ALE 1
Intro. to CCH Hydro 1
Test-Driven Hydrocode Development 1

Misha Shashkov LANL Interface Reconstruction 1
Remapping 1

Jim Kamm Sandia Verification 3
Greg Weirs Sandia Verification 2
Scott Ramsey LANL Verification 2
Rob Gore LANL Turbulence Modeling 8
Tom Masser LANL Shocks in Simple Plasmas 1
Cynthia Reichhardt LANL Material Modeling 1
Bill Rider Sandia History of Hydrocodes 4
Chris Simmons UT-Austin Software Quality 1
Nick Malaya UT-Austin Verification w/ Manufactured Sol’ns 1
Bhuvana Srinivasan LANL Multi-Fluid Plasmas 1
Ben Bergen LANL Computational Sciences 1
Heidi Tierney LANL EMP 1

2012 Computational Physics Student Summer Workshop: Final Reports

2012 Computational Physics Student Summer Workshop: Final Reports

Student Reports

The reports that follow are assembled from separate PDF files. The table of contents at the
beginning of this document uses page numbers in this fully assembled PDF file. In other words,
it is recommended that the reader use the page indicator in the PDF viewer as the page number
when navigating this combined document.

2012 Computational Physics Student Summer Workshop: Final Reports

Capturing Material Discontinuities
and GPU Programming

(Bob Robey, mentor)

Numerically Tracking Contact Discontinuities

Sean Davis∗ and Will Matern∗

August 15, 2012

Abstract

We review some of the classic numerical techniques used to analyze contact discontinuities and com-
pare their effectiveness. Several finite difference methods (the Lax-Wendroff method, a Multidimensional
Positive Definite Advection Transport Algorithm (MPDATA) method and a Monotone Upstream Scheme
for Conservation Laws (MUSCL) scheme with an Artificial Compression Method (ACM)) as well as the
finite element Streamlined Upwind Petrov-Galerkin (SUPG) method were considered. These methods
were applied to solve the 2D advection equation. Based on our results we concluded that the MUSCL
scheme produces the sharpest interfaces but can inappropriately steepen the solution. The SUPG method
seems to represent a good balance between stability and interface sharpness without any inappropriate
steepening. However, for solutions with discontinuities, the MUSCL scheme is superior. In addition, a
preliminary implementation in a GPU program is discussed.

1 Introduction

The earthquake and resulting tsunami in Japan caused a release of radioactive material into the pacific ocean.
This radioactive waste was carried by the Kuroshio current into the North Pacific current and is making its
way to the US coastline. These currents can produce sharp flow discontinuities with the surrounding ocean
water. The idea of tracking these flows and accurately resolving the interfaces between the radioactive and
non-radioactive fluids provides a motivation for resolving contact discontinuities.

Many classic techniques have been developed to analyze contact discontinuities. The most simple scheme
is a first order upwind method. First order schemes can be proven to preserve their order across discontinuities
(monotonicity). Although this method is monotone, a large amount of diffusion error is introduced at each
time step. Therefore, higher order methods have been developed to solve problems without introducing
such large errors. The difficulty with higher order methods is that, according to Godunov’s Theorem, they
cannot be monotone across discontinuities. Therefore, limiters have been introduced and will be discussed
in Section 2.1.

Several higher order finite difference methods (the Lax-Wendroff method with limiters, a Multidimen-
sional Positive Definite Advection Transport Algorithm (MPDATA) method and a Monotone Upstream
Scheme for Conservation Laws (MUSCL) with an Artificial Compression Method (ACM)) as well as the
finite element Streamlined Upwind Petrov-Galerkin (SUPG) method are considered and compared for their
effectiveness. These methods were applied to solve the 1D advection equation with three types of waves:
a square wave, a triangular wave and an exponential smooth wave. Based on these results, we were able
to conclude that the MUSCL scheme with artificial compression produces the sharpest interfaces but can
inappropriately steepen the solution. The SUPG method seems to represent a good balance between stability
and interface sharpness without any inappropriate steepening but is a non-conservative method. However,
for solutions with discontinuities, the MUSCL scheme is still superior. Each of these methods is detailed
in Section 2 followed by a brief description of the results from the different methods in Section 4. We then
discuss the conclusions and future directions we hope to take with the research in Section 5.

∗Mentor: Dr. Bob Robey, Los Alamos National Lab

1

1.1 Introduction to GPUs

Graphics Processing Units (GPU) are typically used for accelerating graphics intensive applications. While
these devices have been optimized for such applications, their ability to process significant data in parallel can
also be harnessed for more general use. Because of recent advances in software, general purpose computing
on graphics processing units (GPGPU) is an alternative to using additional CPUs for executing a program.
GPGPU has the additional economic advantage of providing a greater number of floating point operations
per second (FLOPS) per dollar. The two main languages used to program on GPUs are CUDA and OpenCL.
While CUDA has more libraries available, it has the disadvantage of only being able to be used on NVIDIA
GPU cards while OpenCL can be used with any programmable GPU. A GPU enabled code was developed
to solve the shallow water equations and is described in Section 3.

2 Discription of Methods

2.1 Lax-Wendroff

The Lax-Wendroff method is a finite difference method designed for hyperbolic PDEs that is second order
accurate in both space and time. This scheme can be understood as a two-step method. On the first step the
fluxes at a half step in both space and time are calculated. On the second step of the method the half-step
fluxes are used to calculate the new value of the conserved variable at each point in the domain. This scheme
works well for smooth data but can run into trouble when the solution develops a discontinuity. When this
occurs, the solution becomes highly oscillatory around the discontinuity.

It has been shown by numerous authors [4,5] that there is a simple fix for oscillations around discontinu-
ities. First order schemes for hyperbolic PDEs (such as upwind finite differencing) do not lead to oscillations
like higher order schemes (Lax-Wendroff). Flux limiters work by interpolating between the flux calculated
by a first order scheme and the flux calculated by a higher order scheme. Oscillations near a discontinuity
can be eliminated by making the approximation mimic a first order scheme near a steep gradient using a
flux limiter and while higher order accuracy is achieved in smoother regions.

It has been mathematically shown that certain formulas for flux limiters in linear PDEs lead to schemes
which are monotonicity preserving. This means that if the solution is monotonic at a certain time step it
will remain monotonic at the next time step. This property is equivalent to saying that the scheme will
not introduce new extrema and that the scheme is Total Variation Diminishing (TVD). We explored several
limiters to preserve the monotonicity of our solutions and settled on the Superbee method, which produces
the sharpest possible gradients while still being TVD.

2.2 MPDATA

Developed by Smolarkiewicz beginning in the early 1980s [6–8], the MPDATA algorithm is a finite-difference
approximation for the advective terms in the fluid equations. A donor-cell approximation to the equation is
defined in terms of the local Courant number. The resulting equation is a first order upwind finite difference
scheme, which is very diffusive.

By analyzing the approximation from the first step using a modified equation analysis, it can be seen
that a diffusive convective flux term is added to the model equation. This erroneous diffusion damps out
nonphysical oscillations but also overly smears the solution over time.

As an example, the pure advection equation,

∂Ψ

∂t
= − ∂

∂x
(uΨ)

becomes,
∂Ψ

∂t
= − ∂

∂x
(uΨ)− ∂

∂x

(
−K∂Ψ

∂x

)

2

using an upstream approximation. The added dissipation error, ∂
∂x

(
K ∂Ψ

∂x

)
, is then subtracted out of the

solution using an antidiffusive velocity to cancel the additional convective flux.

2.3 MUSCL with ACM

The MUSCL that we used is a modified Osher-Chakravarthy scheme [12], which is a second order TVD
approximation to the scalar conservation laws. The modifications produce a third order accurate MUSCL
solver [9]. The method is upwind biased and uses a minmod function to avoid numerical oscillations in the
solution.

Hartens ACM [1] was initially intended to be used to sharpen contact discontinuities for first order
accurate schemes. However, this technique has been extended to higher order methods such as Essentially
Non-Oscillatory (ENO) schemes [3], MUSCL [9] and RAGE [2], which is widely used at LANL. This slope
modification method relies on a switch to increase or decrease the slope of a function near a discontinuity.
For the purposes of this presentation, the advection equation is solved using a MUSCL scheme with ACM.

2.4 SUPG

In the finite element method a set of trial functions are assumed to represent the solution of a differential
equation over a region. These trial functions have certain degrees of freedom that must be solved for. The
differential equation is multiplied by a test function and the new equation is then integrated over the region
that the original differential equation is to be solved on. This generally yields one unique algebraic equations
for each test function used. The resulting system of algebraic equations are then solved for the degrees
of freedom. In Galerkin approaches, the test functions are assumed to be the same as the trial functions.
However, when sharp gradients are present Galerkin methods produce highly oscillatory solutions. This
can be helped in the case where the differential equation is an advection/diffusion equation by introducing
the more general Petrov-Galerkin (PG) approach in which the test functions can be different from the
trial functions. The streamline upwind Petrov-Galerkin (SUPG) [10] approach chooses a specific set of test
functions which can be observed to significantly reduce oscillations in the solution. For the 2D advection
equation these test functions are the same as the trial functions with two additional terms:

W = N +
αh

2

(
u√

u2 + v2

∂N

∂x
+

v√
u2 + v2

∂N

∂y

)
(1)

Where W is test function, N is one of the trial functions, α is an arbitrary parameter usually taken to be 1 for
pure advection, h is a 1D length of an element, and u-v are the velocity in the x-y direction, respectively.

3 Wave Code

3.1 GPGPU Basics

A GPU can be visualized as thousands of weak processors operating on data that all of the processors
can access (global memory). However, there is an important division of these processors that limits what
can be processed on a GPU. A warp (Nvidia) or wavefront (AMD) refers to groups of 32 or 64 processors,
respectively, that must all run the exact same code but can begin with different data. GPUs are therefore ideal
for doing SIMD (Single Instruction Multiple Data) operations [11]. Processors in the same warp/wavefront
can also use special shared memory that is much faster than global memory. In OpenCL you must define
the number of instances of a kernel (called the work group size) you want to run on the GPU. Choosing a
multiple of the warp/wavefront size is the most efficient choice as this means none of the processors will be
producing output that won’t be used. An important point for GPU programming is that the CPU must
move all memory to the GPU card before the GPU can process it. A typical bottleneck for GPU applications
is the latency of transferring data between the GPU memory and the CPU memory. Thus it behooves a
programmer to make as few data transfers to and from the GPU as possible.

3

3.2 Model Equations and Method

The GPU enabled code we have been working with models the shallow water equations using a Lax-Wendroff
method with a Minmod TVD Limiter, as described in Section 2.1. This simplification of the Euler Equations
assumes that the length of waves is far greater than the depth of the fluid. This allows for an incompressible
model:

∂h

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0

∂(uh)

∂t
+
∂(u2h+ 1/2gh2)

∂x
+
∂(uvh)

∂y
= 0

∂(vh)

∂t
+
∂(uvh)

∂x
+
∂(v2h+ 1/2gh2)

∂y
= 0

where h is the height, u is the velocity in the x-direction, v is the velocity in the y-direction and g is the
gravitational acceleration. With the introduction of an advection equation for a passive tracer concentration,
ψ:

∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
= 0

we can look at our motivational problem, namely the advection of radioactive water across the Pacific Ocean
more closely in the future.

4 Results

In order to analyze the various methods described in Section 2, we looked at a 1D advection problem.
Although we developed our code in 2D, the advection of waves in 1D highlights the similarities and differences
between the methods. While we were most interested in resolving sharp discontinuities, we wanted to be
sure that the method didn’t artificially sharpen other types of waves. We have therefore included a square
wave, a triangular wave and an exponential smooth wave in Figures 1-5.

(a) (b) (c)

Figure 1: Advection of a square wave, a triangular wave and an exponential wave over time with periodic
boundary conditions after (a) 1 pass through the domain, (b) 5 passes through the domain and (c) 10 passes
through the domain using a first order upwind method.

A graphics package called MPE is employed in the Wave Code described in Section 3 to show realtime
images of the desired variable. The evolution of the height in the shallow water equations as a wave moves
from left to right is shown in Figure 6 and a passive tracer concentration is shown in Figure 7 for the same
time steps.

4

(a) (b) (c)

Figure 2: Same caption as Figure 1 except that a Lax-Wendroff method without any slope limiters was used
to advect the waves.

(a) (b) (c)

Figure 3: Same caption as Figure 1 except that a Superbee Limiter was used along with the Lax-Wendroff
method to advect the waves.

(a) (b) (c)

Figure 4: Same caption as Figure 1 except that a MUSCL with an ACM were used advect the waves.

5

(a) (b) (c)

Figure 5: Same caption as Figure 1 except that SUPG was used to advect the waves.

Figure 6: Evolution of the height of a wave over time using the GPU enabled wave code.

Figure 7: Evolution of the concentration of a dye over time using the GPU enabled wave code.

6

5 Conclusions and Future Directions

As was described in the introduction, the first order scheme shown in Figure 1 will remain stable across a
sharp discontinuity. When higher order methods are considered, this is not necessarily the case. The second
order Lax-Wendroff scheme does not exhibit monotonicity by itself as can be seen in Figure 2. When a
Superbee limiter is introduced as in Figure 3, the method drops to first order near the steep gradients and
the method can be considered TVD. Superbee is the TVD best limiter for sharp discontinuities albeit still
diffuse but it over sharpens smooth waves.

Both the pros and the cons of the MUSCL are starker than the Lax-Wendroff TVD scheme used. The
MUSCL is even more effective at preventing diffusion across sharp interfaces. On the down side, the MUSCL
unnaturally sharpens normally smooth waves as is evident from the evolution of the initially exponential
distribution in Figure 4.

The SUPG scheme provides a compromise between the over sharpening and diffusion errors by gradually
diffusing the solution. However, it is evident from Figure 2.4 that the method is also not conservative. The
choice of method is therefore problem specific and most production scale codes should have the option to
switch between algorithms.

While, the Lax-Wendroff scheme has been applied to a GPU code, as shown in Figures 6 and 7, other
methods will be ported to the GPU. MPDATA has the option of iterating the anti diffusion step and
increasing its order of accuracy. Because FLOPS are essentially free on a GPU, this iterative method could
produce highly accurate results with little computational time. We will also be looking into new methods,
in particular a comparison of the above methods with an H-WENO scheme is being worked on.

6 Acknowledgements

We would like the thank our mentor Bob Robey for all of his help and advice throughout the summer
as well as assistance from David Nicholaeff. We would also like to thank Scott Runnels for organizing
the Computational Physics Summer Workshop, which allowed us to come to Los Alamos National Lab to
complete this work.

References

[1] Harten A. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics,
49:357–393, 1983.

[2] Clover M. Betlach T. Byrne N. Coker R. Dendy E. Hueckstaedt R. New K. Oakes W. R. Ranta D.
Gittings M., Weaver R. and Stefan R. The rage radiation-hydrodynamic code. Computational Science
and Discovery, 1, 2008.

[3] Yang H. An artificial compression method for eno schemes: The slope modification method. Journal of
Computational Physics, 89:125–160, 1990.

[4] Leveque R. J. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.

[5] Rider W. J. A comparison of tvd lax-wendroff methods. Communications in Numerical Methods in
Engineering, 9:147–155, 1993.

[6] Smolarkiewicz P. K. A fully multidimensional positive definite advection transport algorithm with small
implicit diffusion. Journal of Computational Physics, pages 325–362, 1984.

[7] Smolarkiewicz P. K. Mulidimensional positive definite advection transport algorithm: An overview.
International Journal for Numerical Methods in Fluids, 50:1123–1144, 2006.

7

[8] Smolarkiewicz P. K. and Wojciech G. W. The multidimensional positive definite advection transport
algorithm: Nonoscillatory option. Journal of Computational Physics, 86:355–375, 1990.

[9] Wu C. Lin J. Chen Y. Lin S., Chin T. A pressure correction-volume of fluid method for simulation of
two-phase flows. International Journal for Numerical Methods in Fluids, 68:181–195, 2012.

[10] Zienkiewicz O. and Taylor R. The Finite Element Method Volume 2. Butterworth-Heinemann, 2005.

[11] Satyamoorthy P. Stt-ram for shared memory in gpus. University of Virginia, 2011.

[12] Osher S. and Chakravarthy S. High resolution schemes and the entropy condition. Siam Journal of
Numerical Analysis, 21, 1984.

8

2012 Computational Physics Student Summer Workshop: Final Reports

Methods Supporting Multi-Material
Cell Calculations

(Misha Shashkov, mentor)

Moment of Fluid Interface Reconstruction with Increased

Sub-gridcell Resolution

Matthew Jemison
Department of Applied & Computational Mathematics

Florida State University

Mentor: Dr. Mikhail Shashkov

August 15, 2012

Abstract

A new approach to increase sub-gridcell resolution of the Moment of Fluid (MOF) Interface Re-
construction is proposed. Instances when separation exists between like-material regions in a cell are
detected. Fictitious material labels are introduced to model the system as a multimaterial cell for the
purposes of interface reconstruction. Efforts are then made to capture the material configuration using
multiple piecewise-linear interfaces that divide a cell into three distinct regions. The procedure for group-
ing like-material regions and reconstructing the material configuration after advection is described. The
method is tested by applying a known, divergence-free velocity to a scalar field representing a material
configuration that is deformed by the flow, after which the material interface is reconstructed. Numerical
results are presented, along with analysis of the data.

1 Introduction

The Moment of Fluid (MOF) method is a piece-wise linear interface reconstruction technique introduced
in [5]. Given a mixed cell (i.e. a cell with more than one material), we wish to reconstruct the interface
between the materials. Given the volume fraction F1 and reference centroid xref,1 of Material 1 in a cell
(Eqn. 1.1,1.2), MOF finds the interface that exactly captures the volume and minimizes the error between
the reference (input) centroid and computed centroid. Here, Ω refers to the cell, and Ω1 refers to the portion
of the cell occupied by Material 1.

F1 =

∫
Ω1
dx

|Ω|
(1.1)

xref,1 =

∫
Ω1

x · dx
|Ω|F1

(1.2)

Multimaterial MOF [4] applies the principle of using moment and volume data in interface reconstruction
to situations when more than two materials occupy a cell. In general, if N materials exist in a cell, N − 1
piecewise-linear interfaces must be found. In the case when more than two materials occupy a cell, the final
material configuration will be dependent on the order of reconstruction. The process of nested dissection is
used to prevent overlap of interfaces. Consider the case where a cell is occupied by Materials 1, 2, 3, etc.
At each step, a material is chosen for reconstruction. After the interface is found, the material is removed
from the cell domain. Assume without loss of generality that Material 1 is chosen first, Material 2 is chosen
second, etc. Then the domain will be dissected as in (1.3).

Ω ∩ ΩC
1 → (Ω ∩ ΩC

1) ∩ ΩC
2 → etc. (1.3)

1

~xref~xA

Figure 1: Given the volume under the dark, curved interface and the reference centroid, xref , MOF will
find the piecewise-linear interface that exactly captures the volume and minimizes error between the actual
centroid xA of the reconstructed interface and the reference centroid.

Note that different orderings can result in different material configurations, as different portions of the
cell may have been removed after a dissection.

Moment of Fluid is to be contrasted with Volume of Fluid (VOF) Methods [2]. Volume of Fluid methods
exactly capture the volume of a material in a cell and use volume fraction information from surrounding
cells to compute interface orientation. These techniques are cheaper than Moment of Fluid because they use
a closed form to obtain the normal direction of the material interface. However, because they use non-local
information in to determine the orientation of the interface, they cannot resolve features smaller than the
stencil used in the calculation of the normal. They will not preserve linearity in cases where sharp interfaces
lie on cell boundaries, a case well resolved by MOF [5]. Additionally, use of only local information in the
reconstruction of a cell interface makes MOF more readily parallelizable.

Both MOF and VOF techniques are capable of modeling multi-material cells (cells that contain more than
two materials). VOF uses the ‘onion skin’ model, which requires that at each reconstruction, all previously
reconstructed fluids lie behind the interface. This can result in material overlap and fails to capture a T-
junction topology or ‘triple point’ where three fluids meet [2]. Moment of Fluid is capable of resolving such
material configurations through the use of nested dissection [1]. The local nature of the Moment of Fluid
reconstruction coupled with its ability to resolve more complex material configurations makes it preferable
for the purposes of this study.

The Moment of Fluid reconstruction breaks down for under-resolved features. Consider the case in Fig.
2. MOF uses volume fraction and centroid information, but has no way to detect connectedness of groups
of the same material. In essence, all regions of a given material in a cell are treated as a single entity for
reconstruction. In principle, we would like to detect when like-material regions are disconnected and use
multiple interfaces in reconstruction, rather than a single interface.

2

Figure 2: Left: A filament in the interior of a cell. Center: MOF reconstruction of the filament shown in
red, with the true solution in dotted lines. Right: MOF reconstruction of the filament in red at higher mesh
resolution, with the true solution in dotted lines.

2 Advection Procedure

The ideas of Le Chenadec and Pitsch [3] are used in the context of unsplit advection. First, a forward sweep
is performed at time level tn. Material is advected forward based on the velocities located at cell vertices,
then a conservative remapping procedure is applied. This may be viewed as determining where material
from a given cell will be transported. Formally, finding the nodes of the target region is equivalent to solving
the ODE in Eqn. 2.1 for position X(tn+1) with the initial condition (2.2) that nodes are located at position
x at time tn [7].

dX

dt
= u(X, t) (2.1)

X(tn) = x (2.2)

The updated values are used as a predictor for the solution at time level tn+1, and a backward sweep is
performed. The predicted velocity at time level tn+1 is used to advect material at tn. This may be viewed as
determining what material will arrive at any given cell at tn+1. Formally, finding the nodes of the departure
region is equivalent to solving Eqn. 2.1 for X(tn) with the condition (2.3) that the nodes x of the cell are
the solution to the ODE at time tn+1.

X(tn+1) = x (2.3)

For the passive advection problems tested in this report, velocity is known in an analytical form. This
analytical form is used to find velocity at corner nodes in the computation of departure and target advection
regions.

3

Figure 3: Left: Material configuration at time level tn, with forward sweep. The target region is shown as a
dotted line. Right: Remapping of the original cell to the target region.

Figure 4: Left: Material configuration at time level tn, with backward sweep. The departure region is shown
as a dotted line. Right: Remapping of the departure region to the target cell.

4

3 Conglomeration Algorithm

In general, the advection procedure maps portions of material from multiple cells to a single cell (the target
cell). Each of these cells is potentially cut by an interface and intersected with the region that will be mapped
to the target cell. Once all portions of the intersected cells have been mapped forward to the target cell, the
target cell is occupied by a set of polygons.

A conglomeration procedure is used to identify which polygons should be grouped together when recon-
structing the material interface. Each polygon carries a material ID, and adjacent polygons with matching
material ID’s should be grouped into the same region, or conglomerate. The simplest algorithm for forming
these material conglomerates is as follows.

1. Choose a starting polygon Pi

2. Identify all ungrouped polygons Pj that are adjacent to Pi and have the same material ID.

3. If new polygons have been identified, repeat from Step 1 for each Pj . If no new polygons are identified,
then continue.

4. Denote grouped polygons a completed conglomerate Ci.

5. Compute volume fraction Fi and centroid xi of conglomerate Ci.

6. Identify any ungrouped Pi∗. If no such polygon exists, all conglomerates have been found; exit. If
there does exist such a polygon, return to Step 1.

3.1 Computational Considerations

Consider two triangles Ti and Tj with sides represented by line segments S1,i, S1,j , S2,i, etc. Triangles Ti

and Tj are considered adjacent is for some pair of sides Sk1,i and Sk2,j , (3.1) holds, for some open set (a, b).

(a, b) ⊂ Sk1,i ∩ Sk2,j (3.1)

In essence, triangles should not be conglomerated in the case that the intersection of their sides is the
empty set or a single point. Numerically, we cannot directly compare values to test for adjacency of sides,
due to round-off errors that are inherent to calculation with real numbers. Instead, the sides are taken as
vectors. If the cross-product between sides (3.2) falls below a tolerance, the sides are said to be parallel.

~Sk1,i × ~Sk2,j (3.2)

If sides are found to be parallel, then the projection of the endpoints of one side onto the linear extension
of the other side is found. If the difference between the endpoint and the projection of the endpoint falls
below a certain tolerance, the sides are said to be co-linear. Finally, co-linear points can be parametrized, so
that one may find the intersection of the two line segments. If the intersection is some open set, the triangles
are said to be adjacent.

Computing Fi and xi in the form presented (1.1-1.2) amounts to integrating over a (potentially non-
convex) polygon. In practice, it is more computationally straightforward to triangularize the polygons Pi,
compute Fi and xi for each triangle, and recombine the information to find the volume fraction and centroid
of the polygonal element. There exists an analytical form for the volume and centroid of a triangle. This
can be used to compute the integral over the entire polygonal element.

Suppose a polygon Pi is defined as the union of a set of N triangles (3.3).

Pi = ∪N
j=1Tj (3.3)

For each triangle, compute volume VTj and centroid xTj as in (3.4 - 3.5). Let triangle Tj have vertices vj,1,
vj,2, and vj,3.

xTj =
vj,1 + vj,2 + vj,3

3
(3.4)

5

VTj =
1
2
|(vj,2 − vj,1)× (vj,3 − vj,1)| (3.5)

Then, it is straightforward to compute the integral in (1.2) over the triangle.∫
Tj

x · dx = VTj xTj (3.6)

Once centroids and volumes have been computed for all triangles Tj , the volume VPi and centroid xPi of
the polygon can be easily calculated.

VPi =
∫

Pi

dx =
N∑

j=1

VTj (3.7)

xPi =

∫
Pi

x · dx
|Pi|

=

∑N
j=1 VTj xTj

VPi

(3.8)

This procedure is then used to find the volume fraction (3.10) and centroid (3.11) for a conglomerate Ci,
defined as (3.9), in cell Ω.

Ci = ∪M
j=1Pj (3.9)

FCi =

∑M
j=1 VPj

|Ω|
(3.10)

xCi =

∑M
j=1 VPj xPj

FCi |Ω|
(3.11)

3.2 Conglomerate Configuration

Once all conglomerates have been found, several situations can exist.

1. There is only one conglomerate, i.e. the cell is a pure cell with only one material.

2. There are two conglomerates with different material ID’s. In this case, the algorithm reverts to two
material MOF interface reconstruction.

3. There are multiple conglomerates with different material ID’s. In this case, a decision about interface
topology must be made.

In the case of a pure cell, there is nothing to be done in terms of either conglomeration or interface recon-
struction because no interface is present. This can be identified by preprocessing during the conglomeration
routine to boost performance. If all polygonal elements have the same material ID, perform no conglomera-
tion; write the input ID’s to the output and continue. In the case of one conglomerate of each material, the
cell is cut by a single interface. This is the situation for which Moment of Fluid Interface Reconstruction was
designed. The conglomeration algorithm will perform the grouping, discover that only one conglomerate of
each material exists, then write the material ID’s to output. The interface reconstruction will be identical to
MOF because no fictitious material ID’s are introduced. This is computationally less efficient because more
work will be expended with no gain in accuracy.

In the final case, multiple conglomerates of a given material exist, meaning a filament may form. Let
us define a filament as a material region that separates two or more like-materials such that they are not
adjacent. We will denote the material that is separated by the filament as the “bulk” fluid. Note that the
labels filament and bulk make no assumption of relative size of the regions (Fig. 5).

6

If a cell is cut by a filament with interfaces of zero curvature, we wish to be able to recover the material
configuration exactly. With Multimaterial Moment of Fluid, it is possible to capture the interfaces within the
tolerance of volume and centroid error in the reconstruction process. By assigning a fictitious third material
ID to one of the bulk regions, the procedure of nested dissection [4] can be used to recover the two interfaces.
As with a true multimaterial case, it is necessary to choose the ordering that minimizes reconstruction error.
If the filament material is selected first for reconstruction, the resulting material configuration may differ
significantly from the true material configuration. While no a priori form exists for the optimal ordering
for reconstruction, the conglomerate with the centroid farthest from the cell center is less likely to be the
filament.

3.3 Disconnected Conglomerates

A common occurrence in numerical simulations of deforming interfaces is the formation of “flotsam,” small
regions of material in a cell of a different material [9]. Flotsam can separate from an interface and merge
at a later time. Suppose a piece of flotsam of Material 1 enters a cell that contains both Material 1 and
Material 2, and the flotsam does not touch the boundary of the cell. This case cannot be captured exactly
with either one interface (as with MOF) or with two interfaces (using filament machinery). In this scenario,
the location and orientation of the interface will be affected proportionally by the mass and location of the
flotsam. Because a filament (as defined in Section 3) does not exist if a piece of flotsam is interior to the
cell, we conglomerate the flotsam and the larger material and perform the reconstruction. The Moment of
Fluid reconstruction will find the interface in the cell that exactly captures the volume of the material and
minimizes centroid error [5].

3.4 General Conglomeration Algorithm

Consider now the general case, with multiple conglomerates of two materials. We seek to identify “optimal”
groupings in the sense that the conglomerates formed can best be represented by one or two interfaces. The
full conglomeration algorithm is presented.

1. Form all Material 1 and 2 conglomerates: 1, 2, 1’, 2’, 1”, 1”’, 2”’,etc.

2. Choose at most the two largest conglomerates of each material that are touching a cell edge. These
are the bulk candidates. If one material has no conglomerates adjacent to the cell edge (i.e. all
conglomerates are interior to the cell), use the standard MOF reconstruction and skip to the final step.

3. Attach all remaining conglomerates to the ‘nearest’ like-material bulk candidate.

4. Introduce fictitious material ID’s to account for any material with more than one conglomerate. Up
to 4 materials may exist in a cell: 1, 2, 1’, 2’.

5. If two conglomerates of each material exist, then two separate interface reconstructions must be per-
formed; continue to the next step. Otherwise, perform an interface reconstruction as in Multimaterial
MOF and skip to the final step.

6. Perform an interface reconstruction assuming that Material 1 is the bulk material and Material 2 is the
filament. Perform another reconstruction assuming that Material 2 is the bulk material and Material
1 is the filament.

7. Accept the interface reconstruction that minimizes centroid error.

For work presented in this report, assigning remaining conglomerates to the ‘nearest’ bulk candidate was
performed based on distances between conglomerate centroids, as computed in Eqn. 3.11. The fictitious
fluid labels allow for differentiation between separated conglomerates of the same material. Multimaterial
MOF will see them as different fluids and perform the dissection and reconstruction procedure accordingly.

7

1 1

1

2
2

2

2

2

1

Figure 5: Left: Cell after advection. Polygons are labeled with material ID’s. Center: Colors denote
grouping of material conglomerates according to the general conglomeration algorithm. Right: Potential
reconstruction of material configurations. Red material is a filament, separating the blue and green bulk
materials.

This is different from the procedure of standard MOF. During computation of volumes and moments of the
materials in the cell, only the material ID is taken into account when grouping polygonal elements. With
no respect to the adjacency of like-material elements in a cell, all polygonal elements of the same material
will be grouped into a single conglomerate, to use the language of this paper. In a two fluid simulation, this
will result in two conglomerates in all mixed cells, regardless of the topology of the material configuration.

If a filament forms and generates a new, fictitious material ID, this should not prevent material from
reforming at a later time step to a single material, eliminating the fictitious material ID. In addition and
prior to the detection of pure cells, a preprocessing step should be carried out. All secondary, fictitious
material ID’s should be replaced by the primary material ID before the conglomeration procedure begins.

1. Begin preprocessing.

2. Assign any material with fictitious ID 1’ an ID of 1.

3. Assign any material with fictitious ID 2’ an ID of 2.

4. Scan all polygonal elements. If all elements have the same material ID, denote the cell ‘pure.’

5. If the cell is pure, do not perform conglomeration. Write element ID’s to output and proceed to the
next cell.

6. If the cell is not pure, perform conglomeration and interface reconstruction.

Grouping should not differentiate between a material and its counterpart that was assigned a fictitious
label at a previous time step. Physically, they represent the same material, and they should be conglomerated
if adjacent.

Consider the more severe case of disconnected conglomerates, where one or more conglomerates of Ma-
terial 1 exists in a cell and none of the Material 1 conglomerates is adjacent to the boundary of the cell.
Material 2 makes up the remainder of the cell. This case is indicative of flotsam. It is possible that the
flotsam may occupy a large portion of the cell or nearly form a filament, but no attempt is made to detect
this situation. The proposed algorithm is designed to resolve certain sub-cell features, but this case of flotsam
does not fall under this set. The cell is not necessarily segregated into distinct regions that are well-modeled
by linear interfaces. For these reasons, this case is handled by using a standard MOF reconstruction. After

8

performing the preprocessing step, material ID’s are written to output and interface reconstruction is carried
out. This amounts to grouping all like-material polygonal elements in a single conglomerate.

Other techniques for resolving such sub cell features may include mesh refinement; quantification of
orientation and closeness to the boundary to attempt a fit to a filament; or tracking methods that do not
perform a reconstruction in the under-resolved cell in the hope that at the next iteration it is more obvious
what should be done. These techniques are beyond the scope of this report.

4 Adaptive Mesh Refinement with Filaments

4.1 Refinement Criteria

Adaptive Mesh Refinement (AMR) is a dynamic technique for increasing the resolution in cells where some
feature is under-resolved. Motivations for introducing mesh refinement may include small material volume
fractions, MOF centroid error, interface curvature, and change in topology [1]. The development of filaments
can lead to cells with small material volumes that are captured adequately, so refinement based solely on
volume fractions may be undesirable. Instead, refinement is made based on error in the MOF centroid
reconstruction, as in Ahn and Shashkov [1]. The difference between the reference and actual centroid can
be viewed as a means of detecting curvature and change in topology of the interface. Define MOF error as
in (4.1).

EMOF =
1

min(∂Ωi)

√∑
i

F 2
i ||xref,i − xact,i||2 (4.1)

Value min(∂Ω) is taken as the minimum side length of cell Ω. The sum is taken over all material indices.
The volume fraction of material i is denoted Fi. The reference and actual centroids of material i are denoted
xref,i and xact,i respectively. Once the interface has been reconstructed, compute EMOF . If EMOF exceeds
some tolerance ε, mesh refinement is performed. Mesh refinement is also performed in a buffer region around
the cell.

4.2 Regridding

Regridding is done after every iteration. This gives the mesh a chance to coarsen in the event that an
under-resolved feature and its buffer region have left the cell. The regridding procedure is as follows.

1. Perform reconstruction at the coarsest mesh level.

2. Check the MOF error (4.1). Tag cells whose error exceeds a threshold. Tag cells within a ‘buffer’
distance of the tagged cell as well.

3. Generate the next finer level. Copy data from previous finer level meshes where two ‘finer’ levels
overlap. Otherwise, interpolate data from the coarser level.

4. Go back to step 2 until maximum refinement level is reached.

5 Error Formulation

An analytical solution is not available at intermediate times for all test problems. To approximate the error
for passive-advection, deforming-interface problems, a set of evenly spaced points is initialized on the T = 0
interface. The points are advected according to the flow field using Fourth Order Runge-Kutta. At the
stopping time, these points represent the zero valued contour of the signed distance, or “level set,” function.
Note that segments between points have no relation to the underlying grid. To find the location of the
interface in a cell, it must be possible to evaluate the level set function at an arbitrary point. One could
construct the level set function at a discrete set of nodes and perform extrapolation to evaluate the function

9

elsewhere, but this will introduce error based on the method of extrapolation. Rather, a method similar to
[6] is used. Lagrangian surface data is used to determine distances on the background Eulerian grid.

First, divide the interior of the deformed interface into triangles. Next, using the mesh resolution of the
calculation, tag any cells that are “close” to a given triangle. A number of cells surrounding the triangle
should be tagged so that points contained in nearby cells will include the triangle in determining the distance
function. See Figure 6 for an example of the tagging procedure. A buffer region of 3 cells was used in testing.
The size of this buffer region effectively determines the resolution of the level set function near the surface. A
routine to determine if the edge of a triangle is interior or exterior to the deformed figure must be available,
as well as a routine to determine if a point is interior to a triangle. The distance function is then computed
as follows.

1. Given a point P , determine in which grid cell it is located.

2. Determine all triangles Ti that lie near the cell.

3. For triangle T , calculate the shortest distance from P to any exterior edge. Project the point onto
the extension of the line segment. If the projection lies on the segment, this is the shortest distance
associated with point P and triangle T . If the projection does not lie on the line segment, then calculate
the distance from P to the endpoints of the segment.

4. Take the minimal such distance over all triangles Ti for point P .

5. Determine if P lies interior to any triangle. If so, take the sign of the distance to be positive. Otherwise,
take the sign to be negative.

6. If P lies in a cell not tagged to be ‘near’ any triangle, then take the distance to be a fixed negative
number associated with the size of the buffer.

Figure 6: Cells in the buffer region of the shaded triangle are tagged with a black dot. Here, a buffer of 1
cell is shown. The region is taken as a bounding box defined by the minimal and maximal cell indices of the
vertices of the shaded triangle.

10

The level set function can be used to compute the symmetric difference error of the computed solution,
defined as in (5.1). The level set function is sampled at cell corners. If the sign of the level set is not the
same at all corners, the cell is cut by a material interface. Any cell that is cut is subdivided, and the corners
of each subcell are test. This process can be repeated to arbitrary resolution. In this fashion, the level set
function is used to locate regions of discrepancy between the computed and exact solution. Quadrature is
used to find the magnitude of these regions. Here, ΩC and ΩE represent the computed and exact solutions
for material configurations.

ESD = |(ΩE ∪ ΩC)/(ΩE ∩ ΩC)| (5.1)

Figure 7: Left: Exact solution (solid) and computed solution (dashed). Center: Union of exact and computed
material configurations. Right: Intersection of exact and computed solutions shown in white. Error regions
shaded.

6 Test Problems

6.1 Finite Filament

A filament of length 0.5, width 0.02 is initialized in the unit square domain, [0, 1] × [0, 1] with center at
(0.5, 0.5). The filament is advected such that at time T = 1.0, the filament has returned to its initial
position. The filament is advected horizontally with the top and bottom of the filament conforming to grid
lines. Error for the test (Table 1) using filament machinery is on the order of the tolerance in the MOF
optimization procedure, as expected.

AMR Level Error

Filament MOF
0 1.481× 10−8

1 1.481× 10−8

2 1.481× 10−8

Standard MOF
0 4.969× 10−2

1 4.969× 10−2

2 4.969× 10−2

Table 1: Results for the finite filament test with horizontal advection. Starting mesh resolution is 322.
Refinement tolerance is ε = 0.0003.

A filament of length 0.5, width 0.02 is initialized in the unit square domain, [0, 1] × [0, 1] with center
at (0.51562, 0.5). The filament is advected vertically in a uniform velocity field such that at time T = 1.0,
analytically, the filament has returned to its initial position. The top and bottom of the filament conform with

11

Figure 8: Horizontally advected filament with Filament MOF, 322 resolution. Results shown after 64 itera-
tions, with structure returning to the starting position.

grid lines, but the structure is initialized slightly right of center in a cell. Error for the test (Table 2) using
filament machinery is more severe than the horizontally advected case. For both tests, CFL = |u|∆t

∆x = 0.5,
meaning the structure is advected one half of a grid length at each time step on the uniform grid. In the
horizontal case, due to structural conformity to grid lines at the top and bottom, the structure was captured
to numerical precision at every iteration. This is not the case with vertical advection. The first time step
moves the structure such that the top and bottom no longer conform to grid lines. Without additional
refinement, this situation cannot be resolved exactly.

AMR Level Error

Filament MOF
0 1.108× 10−3

1 4.065× 10−4

2 5.498× 10−5

Standard MOF
0 1.100× 10−2

1 1.100× 10−2

2 1.100× 10−2

Table 2: Results for the finite filament test with vertical advection. Starting mesh resolution is 322. Re-
finement tolerance is ε = 0.0003. It appears that error is being dominated by the error in step 1, when
the filament tip fills the bottom of the cell. It may be preferable to have a smaller tolerance, but there are
already few filament cells.

Lack of convergence under grid refinement for both advection tests in the case of Standard MOF indicates
an error in the testing. To properly initialize each test for Standard MOF, three materials must be used.
However, at all future steps only two materials may exist. Additionally, during vertical advection using
filament machinery, one would expect convergence to the error tolerance, as in horizontal advection, at one
level of mesh refinement. This is due to the fact that at CFL = 1/2, odd advection steps will conform with

12

Figure 9: Vertically advected filament with Filament MOF, 322 resolution. Results shown after 128 iterations,
with structure returning to the starting position.

AMR level 1 grid lines. This indicates an unexpected interaction between filaments and the AMR procedure,
regridding process, or advection. More investigation must be done.

13

Figure 10: Vertically advected filament with Filament MOF, 322 resolution. Results shown after 64 iterations,
with structure returning to the starting position.

6.2 Reversible Vortex

The reversible vortex problem was introduced by Rider and Kothe [8]. The initial material configuration
is defined by a circle of radius R = 0.15 with center (0.50, 0.75) located within the unit square domain
[0, 1] × [0, 1]. The circular region is deformed by a non-linear, unsteady velocity field given by stream
function (6.1).

ψ(x, y, t) =
1
π

sin2(πx) sin2(πy) cos(
πt

T
) (6.1)

Parameter T defines the time for the full period of the flow field, with larger T leading to more de-
formation. For the long period reversible vortex, we take T = 8. Time t = T would see the analytical
solution returning to the initial material configuration. Time t = T

2 defines the time of maximum material
deformation.

Error results at full reversal (Table 3) show that the coarsest level of Filament MOF is comparable to
Standard MOF with an effective mesh resolution 4 times finer. Visual inspection of the results in Fig. 12 -
13 shows the discrepancy between the interface reconstruction at the same effective mesh resolution. At the
same effective mesh resolution, Filament MOF shows a factor of 3− 5 improvement over Standard MOF.

Error at maximum deformation is examined in Table 4. The analytical solution to the flow field is not
available at maximum deformation, t = T

2 , so the procedure in Section 5 is used to approximate an exact
solution (Fig. 11). While the the solution for Standard MOF shows break-up in the thin regions near the
tail not exhibited in Filament MOF (Fig. 16 - 17), the difference in symmetric difference error for shows
only a factor of 2− 3 improvement when using filaments.

14

Figure 11: ‘Exact’ solution for the reversible vortex problem, computed as in Section 5, with 2000 points
intialized on the circle boundary and time step of ∆t = 1

3200 using RK4. This is a factor of 16 smaller than
the smallest time step used. Note the fine, subcell structure at the tail.

AMR Level Error Runtime (sec)

Filament MOF
0 2.908× 10−3 207.850
1 1.098× 10−3 657.587
2 8.582× 10−4 1690.734

Standard MOF
0 1.569× 10−2 183.140
1 9.926× 10−3 672.626
2 2.871× 10−3 1975.072

Table 3: Results for the long-period deforming vortex at t = 8. Starting mesh resolution is 322. Refinement
tolerance is ε = 0.0003.

AMR Level Error

Filament MOF
0 1.453× 10−2

1 6.980× 10−3

2 4.923× 10−3

Standard MOF
0 7.036× 10−2

1 1.382× 10−2

2 7.381× 10−3

Table 4: Results for the long-period deforming vortex at t = 4. Starting mesh resolution is 322. Refinement
tolerance is ε = 0.0003.

15

Figure 12: Reversible vortex after full-reversal with 2 levels of AMR using filaments. Base resolution is 322.

Figure 13: Reversible vortex after full-reversal with 2 levels of AMR without filaments. Base resolution is
322. Note the manifestation of breakup at maximum deformation in the form of material reattached at the
northwest edge of the structure.

16

Figure 14: Reversible vortex at maximum deformation with 2 levels of AMR using filaments. Base resolution
is 322.

Figure 15: Reversible vortex at maximum deformation with 2 levels of AMR without filaments. Base
resolution is 322.

17

Figure 16: Reversible vortex at maximum deformation with 2 levels of AMR using filaments. Base resolution
is 322. Note the resolution of the filament structures at the tail.

Figure 17: Reversible vortex at maximum deformation with 2 levels of AMR without filaments. Base
resolution is 322. Note the breakup of the fine structure in the tail due to the standard MOF algorithm.

18

6.3 Droplet Flow

The droplet flow test case was introduced in [1]. The flow is defined by a steady, divergence-free, non-linear
velocity field. The initial material configuration of a circle with radius R = 0.125 centered at (0.50, 0.50) in
the unit square [0, 1]× [0, 1] develops two sharp edges that extend over time (Fig. 18).

The edges present problems similar to the vertically advected filament at the tip of the reversible vortex.
When the tip of a filament enters a cell but does not span the cell, only two conglomerates are formed: the
tip of the filament material and the background material. This is a situation that is not well-resolved by a
single interface. A second interface could improve accuracy in principle, but it would require partitioning the
background material into adjacent conglomerates such that it is amenable to linear interface reconstruction.
Alternatively, tracking the material and delaying the reconstruction, as mentioned in the discussion of flotsam
(Section 3.4) is possible. For the results presented, AMR was used as a means to attempt to resolve the
interface near the sharp tips.

v =
[

1
8 (8x− 4)

1
8

(
−(8y − 4)− 4− (1− (8x− 4)2 − (8x− 4)4)

)]
(6.2)

Figure 18: ‘Exact’ solution for the droplet problem, computed as in Section 5, with 2000 points initialized
on the circle boundary and time step of ∆t = 1

3200 using RK4. Note the subcell structure at the tips.

The errors presented in Table 5 shows a factor of 3 improvement between Filament and Standard MOF for
the two coarsest mesh resolutions. However, errors at the finest mesh resolution are comparable between the
two methods. This indicates that the tips are increasingly well-resolved, and few filaments are being formed.
This highlights the fact that the filament machinery is an acceleration technique that is most cost-effective
when features are under-resolved. As the mesh is refined, results between Filament MOF and Standard
MOF should converge. Figures 19 - 20 show results for 2 levels of AMR. Break-up in the thin structures near
the tip of the deforming droplet when filaments are not used. However, material topology is not explicitly
taken into account in the error metric, so errors are comparable.

19

AMR Level Error Runtime (sec)

Filament MOF
0 7.059× 10−3 1578.734
1 3.158× 10−3 3129.463
2 2.217× 10−3 5285.594

Standard MOF
0 1.479× 10−2 1728.755
1 9.143× 10−3 3375.182
2 2.679× 10−3 5024.604

Table 5: Results for the deforming droplet at t = 0.75. Starting mesh resolution is 322. Refinement tolerance
is ε = 0.0003. Note: Runtime is dominated by error testing, due to the recursive nature of the integration
procedure (Section 5).

Figure 19: Droplet at time t = 0.75 with 2 levels of AMR and filament capability. Red and green lines
denote filament material interfaces.

20

Figure 20: Droplet at time t = 0.75 with 2 levels of AMR and no filament capability. Note the breakup of
the structure near the tips, similar to the reversible vortex int Fig. 17.

21

7 Conclusions & Future Work

The use of Multimaterial Moment of Fluid interface reconstruction with filaments allows for acceleration
of convergence of the standard Moment of Fluid method. The improvement in accuracy of using filaments
vs. using standard MOF with mesh refinements is typically equivalent to 1 − 2 levels of mesh refinement.
For meshes of the same effective resolution, this comes at an increase in runtime of approximately 10%,
but an increase in accuracy by a factor of 3 − 5 at coarse mesh resolution. The additional cost of forming
conglomerates and performing multiple interface reconstructions when 2 or more conglomerates of each
material exist is less than the increase seen from allowing additional mesh refinement, which can increase
runtime by a factor of 2− 3. Cases where thin structures enter a cell but do not divide the cell into three or
more distinct regions (i.e. a well-resolved filament does not form) are handled no differently than standard
MOF and yield no gains in accuracy. Problems for which filaments are well-suited would include problems
where large structures are deformed to a point where they are under-resolved and breakup of the structure
is undesirable.

These results are encouraging, but it is important to keep in mind that filaments are an acceleration
technique for capturing thin, under-resolved interface features. If all features are fully resolved (i.e. no
cell is cut by more than one interface), then there will be no gains in accuracy to mitigate the additional
computational overhead of the conglomeration procedure. As seen in Section 6.3, the thin structures in
the material were captured to similar precision with or without filaments because all features were fairly
well-resolved at the highest mesh resolution. Convergence in symmetric difference error of Filament MOF
to Standard MOF should be expected as the mesh is refined.

Future work will include incorporation of filament techniques into multi-physics codes that account for
buoyancy, surface tension, and transport by mechanisms other than passive advection. The current imple-
mentation of filaments is in a block-structured square mesh. However, the technique is not dependent on the
mesh. Both MOF and the filament algorithm described in this report are applicable to general, unstructured
meshes ??. The technique can also be generalized to 3D by finding the intersection of faces of polyhedra and
forming conglomerates in a similar fashion. However, this will be a more computationally intensive procedure
than in 2D. More can be done in the case discussed in Section 3.4, when one material is composed entirely
of flotsam that is non-adjacent to the boundary. The current implementation reverts to MOF reconstruction
when this situation is detected. As stated, there are other techniques that can be considered such as mesh
refinement and tracking methods. Detection and error-minimizing resolution of other problematic cases is
an active question. The current method for handling cases of 2 or more conglomerates of each material is
to form a single filament from one of the materials and accept the configuration with the lowest error. In
some cases, standard MOF may produce lower error. Another alternative is to not form a filament and
apply Multimaterial Moment of Fluid for the 4 materials. Finally, the generalization of filaments to the true
multimaterial case with N fluids and N fictitious labels has yet to be implemented.

Acknowledgments

The author would like to thank his mentor, Dr. Mikhail Shashkov, for providing the direction for this
project and the motivation to continue when problems arose; collaborator Dr. Mark Sussman for technical
advice on how to proceed; partner Andrew Winters for many fruitful discussions; program coordinator
Dr. Scott Runnels for organizing the Computational Physics Summer Workshop; and Los Alamos National
Laboratories for providing this wonderful opportunity.

References

[1] H. Ahn and M. Shashkov. Adaptive moment-of-fluid method. J. Comput. Phys., 228(8):2792–2821, 2009.

[2] D. Benson. Volume of fluid interface reconstruction methods for multi-material problems. Applied
Mechanics Reviews, 55:151–165, 2002.

22

[3] V. L. Chenadec and H. Pitsch. A hybrid lagrangian-eulerian method for multiphase flow computation.
Journal of Computational Physics, preprint, 2012.

[4] V. Dyadechko and M. Shashkov. Multi-material interface reconstruction from the moment data. Technical
Report LA-UR 06-5846, Los Alamos National Laboratory, 2006.

[5] V. Dyadechko and M. Shashkov. Moment-of-fluid interface reconstruction. Technical Report LA-UR
07-1537, Los Alamos National Laboratory, 2007.

[6] M. Jemison, E. Loch, M. Sussman, M. Shashkov, M. Arienti, M. Ohta, and Y. Wang. A coupled level
set-moment of fluid method for incompressible two-phase flows. Journal of Scientific Computing, 2012.

[7] O. Pironneau. On the transport-diffusion algorithm and its applications to the navier-stokes equations.
Numerische Mathematik, 32, 1982.

[8] W. Rider and D. Kothe. Reconstructing volume tracking. J. Comput. Phys., 141:112–152, 1998.

[9] M. Sussman. A second order coupled levelset and volume of fluid method for computing growth and
collapse of vapor bubbles. Journal of Computational Physics, 187:110–136, 2003.

23

Support Operators Method for the Diffusion

Equation in Multiple Materials

Andrew Winters1,2 and Mentor: Mikhail Shashkov2

1Department of Applied & Computational Mathematics, Florida State University
2XCP-4, Methods and Algorithms, Los Alamos National Laboratory

August 14, 2012

Abstract

A second-order finite difference scheme for the solution of the diffusion equation on
non-uniform meshes is implemented. The method allows the heat conductivity to be discon-
tinuous. The algorithm is formulated on a one dimensional mesh and is derived using the
support operators method. A key component of the derivation is that the discrete analog
of the flux operator is constructed to be the negative adjoint of the discrete divergence, in
an inner product that is a discrete analog of the continuum inner product. The resultant
discrete operators in the fully discretized diffusion equation are symmetric and positive defi-
nite. The algorithm is generalized to operate on meshes with cells which have mixed material
properties. A mechanism to recover intermediate temperature values in mixed cells using a
limited linear reconstruction is introduced. The implementation of the algorithm is verified
and the linear reconstruction mechanism is compared to previous results for obtaining new
material temperatures.

1 Introduction

We collaborated with Dr. Mikhail Shashkov on problems in heat diffusion, principally concerned
with diffusion processes, linear and non-linear, across a material interface. To describe the heat
diffusion process we solve the diffusion equation

a
∂u

∂t
= ∇ · (K∇u) + f, (1.1)

where u is the temperature, K is the material properties tensor, a = cρ > 0, where c is the heat
capacity and ρ is the density, and f is a forcing function. The flux vector w plays an important
role in the numerical scheme to be derived, so it is introduced as

w = −K∇u. (1.2)

The flux (1.2) can, and will be, used to write the diffusion equation (1.1) as a first order system
in Sec. 2. Applying the method of support operators we obtain a set of discrete equations to

1

solve the diffusion equation numerically where, for generality, the material properties tensor K
may be discontinuous.

The support operators method (SOM) takes advantage of the fact that most partial differ-
ential equations are formulated in terms of the invariant differential operators divergence ∇·,
gradient ∇, and curl ∇×. The SOM provides an approach for spatial differencing by construct-
ing discrete analogs of the aforementioned differential operators. The discrete operators satisfy
discrete versions of important differential and integral identities satisfied by the continuum op-
erators. In essence, the SOM constructs a discrete version of the differential operator calculus.
Conservation laws, solution symmetries and adjoint relationships between differential operators
are examples of properties we want the discrete operators to mimic. For the linear diffusion
problem (1.1) the mimetic discretization mimics

1. The Gauss-Green theorem to enforce the local conservation law

2. The negative adjoint relationship between the flux and divergence operators, −K∇ = (∇·)∗

3. Guaranteed symmetry and positivity of the product of the discrete divergence and discrete
flux, the discrete operator DG

4. The null space of the discrete flux operator is the constant functions.

Full details on the mimetic discretization of the diffusion equation are found in, for example,
[8, 12].

The construction of a discrete calculus proceeds in two steps. First we choose a discrete form
for one of the fundamental operators, termed the prime operator. Then, based on some subset
of differential and integral identities we choose to maintain, we construct the other fundamental
operator(s), termed the derived operators. The choice of the prime operator is application and
discretization dependent. In a sense, the prime operator ‘supports’ the construction of the derived
operators.

The remainder of this report is organized as follows. In Sec. 2 we provide a derivation of a
mimetic finite difference (MFD) scheme for the one dimensional diffusion equation (1.1) using
the SOM. Sec. 3 gives an overview of extensions to the MFD scheme from Sec. 2 to non-linear
diffusion problems. In Sec. 4 we discuss generalizations of the MFD scheme to meshes where
cells have mixed material properties. Sec. 5 provides numerical results. Finally, Sec. 6 discusses
conclusions and future work.

2 Global Support Operators Method

We consider the diffusion equation (1.1) in one spatial dimension

a
∂u

∂t
=

∂

∂x

(
k
∂u

∂x

)
+ f, (2.1)

with some initial condition u = u0 at t = 0 and set of boundary conditions. The diffusion
equation (2.1) is solved on a one dimensional domain Ω = [x1, xN]. For generality, we allow the
heat conductivity k to be discontinuous. We use the one dimensional analog of the flux (1.2) to
rewrite the diffusion equation (2.1) as a first-order system

a
∂u

∂t
= −∂w

∂x
+ f,

w = −k∂u
∂x
.

(2.2)

2

We select general Robin type boundary conditions

β

(
k
∂u

∂x

)
n̂+ αu = ψ, (2.3)

where α, β, and ψ are given smooth functions at the boundary of the one dimensional domain
Ω and n̂ is the unit outward normal to the boundary. In one dimension we know n̂ = −1 at x1

and n̂ = 1 at xN . If we represent the boundary conditions (2.3) with the flux w, choose β = 1,
and assume α ≥ 0, we find {

w + αu = ψ atx = x1,
−w + αu = ψ atx = xN .

(2.4)

The SOM requires that the fully discrete problem mimic the semi-discrete problem, where
time, but not space, has been discretized [12]. We perform our analysis on the fully implicit time
discretization of (2.2). First we write the diffusion equation (2.1) and first-order system (2.2)
in terms of abstract operators. Next, we examine a few important properties of the abstract
operators we wish the discrete operators to mimic. Then, following the SOM, we select a prime
operator and use it to support the construction of the derived operator to arrive at a fully discrete
equation. For the derivations that follow we adopt the notation that continuum operators are
capital bold letters and discrete operators are capital script letters.

2.1 The Abstract Operators

The fully implicit semi-discrete diffusion equation and Robin boundary conditions give
a
un+1 − un

∆t
− ∂

∂x

(
k
∂un+1

∂x

)
= f, on (x1, xN),

−k∂u
n+1

∂x
+ αun+1 = ψ, atx = x1,

k
∂un+1

∂x
+ αun+1 = ψ, atx = xN ,

(2.1.1)

where the index n corresponds to the time level tn = n∆t and un = u(x, tn). We assume that a,
k, f , α, and ψ are functions of space and time, but, as we are mainly concerned with the spatial
discretization, we suppress the time index. We write (2.1.1) in operator form

Aun+1 = Fn+1, (2.1.2)

where the operator A is

Au =

au

∆t
− ∂

∂x

(
k
∂u

∂x

)
, on (x1, xN),

−k∂u
∂x

+ αu, atx = x1,

k
∂u

∂x
+ αu, atx = xN ,

(2.1.3)

and the right hand side of (2.1.2) is

Fn+1 =

f +

aun

∆t
, on (x1, xN),

ψ, atx = x1,
ψ, atx = xN .

(2.1.4)

3

The fully implicit semi-discrete flux form of the diffusion equation and Robin boundary
conditions are

a
un+1 − un

∆t
+
∂wn+1

∂x
= f, on (x1, xN),

wn+1 = −k∂u
n+1

∂x
, on (x1, xN),

wn+1 + αun+1 = ψ, atx = x1,
−wn+1 + αun+1 = ψ, atx = xN .

(2.1.5)

The semi-discrete equation (2.1.5) is written in the operator form

wn+1 −Gun+1 = 0, Dwn+1 + Υun+1 = Fn+1, (2.1.6)

where the operators G, D, and Υ are defined as

Gu = −k∂u
∂x
, on (x1, xN),

Dw =

∂w

∂x
, on (x1, xN),

w, atx = x1,
−w, atx = xN ,

Υu =

{ au

∆t
, on (x1, xN),

αu, atx = x1, xN .

(2.1.7)

If we eliminate the flux w from (2.1.6) we relate the operators A, G, D, and Υ by

A = Υ + DG. (2.1.8)

On the other hand, if u is eliminated from (2.1.6) then we obtain a new operator equation

Bwn+1 = (I + GΥ−1D)wn+1 = GΥ−1Fn+1. (2.1.9)

The Hilbert space H is the closure of scalar functions u that are smooth on Ω with the inner
product

(u, v)H =
∫ xN

x1

uv dx+ uv
∣∣∣xN

x1

, u, v ∈ H, (2.1.10)

and the Hilbert space H is the closure of the scalar functions w that are smooth on Ω with the
inner product

(w, z)H =
∫ xN

x1

wk−1z dx dx, w, z ∈ H. (2.1.11)

The inner product (2.1.11) is weighted by the inverse of the heat conductivity k. Because k is
uniformly bounded above and below, so is k−1. Thus, (·, ·)H is an inner product even when k is
discontinuous.

As we only consider one spatial dimension the functions u and w are both scalars. However,
in higher dimensions the temperature u is a scalar and the flux w is a vector. The fact that
the functions u and w are not both scalars in higher dimensions is the motivation for defining
two Hilbert spaces H and H. To keep the discussion general, we need to track which functions
are analogs of scalars and which are analogs of vectors as well as which derivative operations
correspond to the divergence or the gradient. Derivatives which act on the scalar function u are
analogous to the gradient and derivatives which act on w are analogous to the divergence. For
details of a two dimensional SOM derivation see, for example, Shashkov [12].

4

2.1.1 Important Properties of the Abstract Operators

In the SOM we choose a prime operator, a derived operator, an integral identity connecting
the prime and derived operator, discretize the prime operator, and discrete analogs of the inner
products (2.1.10) and (2.1.11). We select the divergence as the prime operator which is discretized
with a one dimensional analog of the divergence theorem (the Fundamental Theorem of Calculus
in one dimension) ∫ xN

x1

∂w

∂x
dx = w

∣∣∣xN

x1

. (2.1.12)

We select the flux G = −k ∂
∂x as the derived operator. The required integral identity is the

Gauss-Green theorem, which in one dimension is just integration by parts∫ xN

x1

u
∂w

∂x
dx+

∫ xN

x1

w
∂u

∂x
dx = uw

∣∣∣xN

x1

(2.1.13)

If we multiply the integrand of the second integral in (2.1.13) by k−1k and rearrange terms we
find ∫ xN

x1

u
∂w

∂x
dx− uw

∣∣∣xN

x1

= −
∫ xN

x1

wk−1k
∂u

∂x
dx. (2.1.14)

From the definition of the operators D and G in (2.1.7), the inner products (2.1.10) and
(2.1.11), and the integral identity (2.1.14) we find

(Dw, u)H = (w,Gu)H, (2.1.15)

which implies that G = D∗. Note the divergence property (2.1.12) is equivalent to

(Dw, 1)H = 0, (2.1.16)

where 1 is the constant function with value 1. Finally, we assume a > 0 and α ≥ 0, to conclude
Υ = Υ∗ ≥ 0. Further, if we take α > 0, then Υ > 0.

To summarize, the continuum operators have the divergence property (2.1.16) and if α > 0,
then

G = D∗, Υ = Υ∗ > 0, (2.1.17)

and because
A = Υ + DG = Υ + DD∗,

B = I + GΥ−1D = I + D∗Υ−1D,
(2.1.18)

it follows that
A = A∗ > 0, B = B∗ > 0. (2.1.19)

For the operator B in (2.1.19) we use the result, if Υ is a symmetric positive definite operator,
then so is Υ−1. The properties (2.1.16) - (2.1.19) are the important properties of the continuum
operators that we want the fully discrete operators to mimic. The properties of A and B follow
from the properties of Υ, D, and G and the definitions of the inner products (2.1.10) and
(2.1.11). The goal of the SOM is to build the discrete analogs of the operators Υ, D, and G and
the inner products (2.1.10) and (2.1.11) that satisfy analogs of (2.1.16) and (2.1.17).

5

2.2 A Mimetic Finite Difference Scheme in One Dimension

Before we proceed with the derivation of the numerical scheme we define the notation used for
the one dimensional mesh. We consider the domain Ω = [x1, xN], which we divide into N − 1
non-overlapping, one dimensional cells. We assume the one dimensional mesh is not uniform.
We derive a staggered grid scheme and thus require a convenient notation for cell edge and
cell-centered values. We adopt the convention that cell edge values carry integer indices and
cell-centered values carry half-integer indices. The cells, the one dimensional area of each cell,
denoted by h, and the heat conductivity in each cell also carry a half-integer index.

2.2.1 The Degrees of Freedom

First we define the degrees of freedom for physical variables temperature u and flux w in the
discretization. For now we assume that each cell is homogeneous but material properties can
vary between cells. This assumption is removed and extensions of the MFD scheme to a mesh
where a cell may contain a material interface is discussed in Sec. 4. The discrete temperature
U is defined at cell-centers and the endpoints of the domain Ω to capture boundary conditions.
The discrete flux W is defined at cell faces.

2.2.2 The Discrete Inner Products

The second step of the SOM is to equip the spaces of discrete temperatures and discrete fluxes
with discrete inner products. We define discrete analogs of the two continuous inner products
(2.1.10) and (2.1.11). Effectively this means we select a quadrature technique on each cell to
approximate the integrals in the continuous inner products. We denote the spaces of discrete
scalar functions as HC and HC. Because the discrete information for U is cell-centered, it is
natural to select midpoint rule for the first inner product (2.1.10)

(U, V)HC =
N−1∑
i=1

Ui+ 1
2
Vi+ 1

2
hi+ 1

2
+ UNVN + U1V1, U, V ∈ HC. (2.2.1)

The discrete inner product (2.2.1) is symmetric, (U, V)HC = (V,U)HC , and if all the areas hi+1/2

are positive, then (U,U)HC ≥ 0 and (U,U)HC = 0 if and only if U = 0. So the discrete inner
product is well-defined. The integral in the continuous inner product (2.1.11) is discretized using
trapezoid rule because the discrete information for the fluxes is located at the edges of the cell

(W,Z)HC =
N−1∑
i=1

Wi+1Zi+1 +WiZi

2ki+ 1
2

hi+ 1
2
, W,Z ∈ HC, (2.2.2)

where ki+1/2 is the heat conductivity and hi+1/2 is the area of cell i + 1
2 . The discrete inner

product (2.2.2) is well defined provided ki+1/2 and hi+1/2 are positive.

2.2.3 The Formal Inner Products

For the computation of adjoint relationships and entries of matrices corresponding to the dis-
cretized operators, we introduce the formal inner products, denoted by [·, ·], in the two spaces of
discrete scalar functions HC and HC. In the space HC we define the formal inner product

[U, V]HC =
N−1∑
i=1

Ui+ 1
2
Vi+ 1

2
+ UNVN + U1V1, (2.2.3)

6

and similarly in the space HC we define the formal inner product

[W,Z]HC =
N∑

i=1

WiZi. (2.2.4)

We relate the discrete inner products (2.2.1), (2.2.2) and the formal inner products (2.2.3), (2.2.4)
by

(U, V)HC = [MU, V]HC , (W,Z)HC = [SW,Z]HC, (2.2.5)

where M = diag
(
1, h3/2, . . . , hN−1/2, 1

)
. Thus, the matrix M is symmetric and positive definite.

The discrete inner product (·, ·)HC (2.2.2) is well defined, so the matrix S must be symmetric
positive definite as [SW,Z]HC is also a well defined inner product. For the one dimensional case
it is straightforward to derive the matrix S . However, we delay the derivation until Sec. 2.2.5.

We have the symmetric positive definite operators M and S . It can be shown that there
exist positive constants Ξi and ξi, i = 1, 2 such that the formal inner products satisfy the bounds

ξ1[U, V]HC ≤ [MU, V]HC ≤ Ξ1[U, V]HC ,

ξ1[W,Z]HC ≤ [SW,Z]HC ≤ Ξ2[W,Z]HC,
(2.2.6)

where the constants Ξi and ξi, i = 1, 2 depend on the upper and lower bounds of k and the size
of the one dimensional cell.

In higher dimensions and on an arbitrary mesh it is extremely difficult to find such a matrix
S that the discrete inner product approximates the continuous inner product with sufficient
accuracy in the space HC, see, for example, [8, 12]. Also, Hyman et. al. showed that the
accuracy of mimetic discretizations strongly depends on a choice of the matrix S [5].

2.2.4 The Discrete Divergence - the Prime Operator

The third step is to discretize the prime operator, which we selected to be the extended divergence
operator D in (2.1.7). We call D the extended divergence operator because it includes boundary
conditions. We denote the discrete divergence by D . On the interior of the domain D is

(DW)i+ 1
2

=
Wi+1 −Wi

hi+ 1
2

, (2.2.7)

for i = 1, . . . , N − 1. On the boundary of the domain D is

(DW)1 = W1, (DW)N = −WN . (2.2.8)

Now if we use the discrete inner product (2.2.1) in conjunction with the discrete divergence
operator D we determine from telescoping sums that

(DW, 1)HC = 0, (2.2.9)

which is the divergence property of the discrete divergence D . The discrete property (2.2.9) is
the direct analog of the continuum property (2.1.16) for the operator D.

2.2.5 The Discrete Flux - the Derived Operator

The discrete flux operator, denoted G , is the derived operator in the SOM. The operator G is
the discrete analog of the continuum operator G = −k ∂

∂x and is defined by G = D∗. The adjoint
is taken with respect to the discrete inner products (2.2.1) and (2.2.2). As will be seen, the

7

operator G can be expressed as the product of a banded and an inverse of a banded matrix, a
fact we exploit in the numerical algorithm. We note that on a one dimensional mesh, which is
always orthogonal and rectangular, the operator G remains banded. In two dimensions for a
general nonorthogonal, logically rectangular grid the operator G is not banded [12].

From the discrete operator D : HC → HC and the definition of adjoint we have

(DW,U)HC = (W,D∗U)HC, (2.2.10)

which we translate to the formal inner products as

[DW,MU]HC = [W,S D∗U]HC. (2.2.11)

In the translation to the formal inner products (2.2.11) we use the fact that M and S are
symmetric. The symmetricity allows us to swap the location of the operators in the formal inner
products without apologizing. We define the formal adjoint D† of D to be the adjoint in the
formal inner product, so

[W,D†MU]HC = [W,S D∗U]HC. (2.2.12)

The relationship (2.2.12) must be true for all W and U , thus

D†M = S D∗, (2.2.13)

and then the discrete analog of the operator G is given as

G = D∗ = S −1D†M . (2.2.14)

In general, S is banded and consequently S −1 is not usually banded, so G is not usually banded
[12]. That is, the discrete flux G has a nonlocal stencil.

The expression for the discrete gradient (2.2.14) contains two unknown operators S and D†

as well as the known diagonal operator M . To determine S and D†M we apply a summation by
parts method to the Gauss-Green theorem (2.1.15). We use the discrete inner products (2.2.1),
(2.2.2) and the discrete operators D and G to rewrite the Gauss-Green theorem (2.1.15) in a
discrete form

(DW,U)HC = (W,GU)HC. (2.2.15)

We expand the discrete integral identity (2.2.15) to find

N−1∑
i=1

Ui+ 1
2

(Wi+1 −Wi)− UNWN + U1W1 =
N−1∑
i=1

Wi+1(GU)i+1 +Wi(GU)i

2ki+ 1
2

hi+ 1
2
. (2.2.16)

If we separate the sums in (2.2.16) and reindex any terms with an i+ 1 index to an i index we
find

N−1∑
i=2

Wi

{
Ui− 1

2
− Ui+ 1

2
− (GU)i

(
1
2

[
hi+ 1

2

ki+ 1
2

+
hi− 1

2

ki− 1
2

])}
+

(
−(GU)N

{
1
2

[
hN− 1

2

kN− 1
2

]}

+UN− 1
2
− UN

)
WN +

(
U1 − U 3

2
− (GU)1

{
1
2

[
h 3

2

k 3
2

]})
W1 = 0.

(2.2.17)

8

The relationship (2.2.17) must hold for any W ∈ HC. Thus, we determine the form for G by
solving for (GU)i in (2.2.17) to find

(GU)1 = −

(
1
2

[
h 3

2

k 3
2

])−1 (
U 3

2
− U1

)
,

(GU)i = −

(
1
2

[
hi+ 1

2

ki+ 1
2

+
hi− 1

2

ki− 1
2

])−1 (
Ui+ 1

2
− Ui− 1

2

)
,

(GU)N = −

(
1
2

[
hN− 1

2

kN− 1
2

])−1 (
UN − UN− 1

2

)
,

(2.2.18)

where i = 2, . . . , N − 1.
So in one dimension we find that the matrix S to be banded with the form

S = diag

(
1
2

[
h 3

2

k 3
2

]
, . . . ,

1
2

[
hi+ 1

2

ki+ 1
2

+
hi− 1

2

ki− 1
2

]
, . . . ,

1
2

[
hN− 1

2

kN− 1
2

])
. (2.2.19)

The operator S is diagonal and thus trivial to invert. The matrix D†M is banded with the
form

−(D†MU)1 =
(
U 3

2
− U1

)
,

−(D†MU)i =
(
Ui+ 1

2
− Ui− 1

2

)
,

−(D†MU)N =
(
UN − UN− 1

2

)
,

(2.2.20)

for i = 2, . . . , N − 1. Thus, the matrix D†M is bidiagonal.

2.2.6 The Discrete Υ Operator

The discrete form of Υ (2.1.7) is

(ΥU)i+ 1
2

=

ai+ 1

2

∆t
Ui+ 1

2
, on (x1, xN),

α1U1, atx = x1,
αNUN , atx = xN .

(2.2.21)

The operator Υ is diagonal, therefore symmetric, and easy to invert. It is assumed that a > 0
and α ≥ 0, so Υ ≥ 0. Also note that if both a and α are bounded below by c and above by C

c(U, V)HC ≤ (ΥU, V)HC ≤ C(U, V)HC , U, V ∈ HC. (2.2.22)

2.2.7 The Discrete Fn+1 Operator

The discrete form of the right hand side Fn+1 (2.1.4) is

Fn+1 =

fi+ 1

2
+
ai+ 1

2

∆t
Un

i+ 1
2
, on (x1, xN),

ψ1, atx = x1,
ψN , atx = xN .

(2.2.23)

The discrete operator Fn+1 is the cell-centered values of the right hand side of the fully implicit
equation (2.1.1) and the right hand side of the boundary conditions (2.4).

9

2.2.8 The Fully Discretized Diffusion Equation

We’ve constructed the necessary discrete operators to determine the fully discretized forms of the
semi-discrete diffusion equation (2.1.2) and (2.1.9). The first order system (2.1.6) is discretized
as

Wn+1 − GUn+1 = 0, DWn+1 + ΥUn+1 = Fn+1. (2.2.24)

If the flux is eliminated from (2.2.24), then we obtain a fully discretized form of the diffusion
equation (2.1.2)

A Un+1 = (Υ + DG)Un+1 = Fn+1. (2.2.25)

However, if the discrete temperature U is eliminated from (2.2.24) we find a single equation for
the flux analogous to (2.1.9)

BWn+1 = (I + G Υ−1D)Wn+1 = G Υ−1Fn+1, (2.2.26)

where I is the discrete identity operator and we assume the operator Υ is positive definite.
The discrete operators A and B have symmetry and positivity properties. In the discrete

inner product space HC we have

(A U, V)HC = (ΥU, V)HC + (DGU, V)HC

= (ΥU, V)HC + (GU,D∗V)HC

= (ΥU, V)HC + (GU,GV)HC ,

(2.2.27)

so clearly A is symmetric and positive, and positive definite if either Υ or G is positive definite.
Also,

(BW,Z)HC = (IW,Z)HC + (G Υ−1DW,Z)HC

= (W,Z)HC + (Υ−1DW,G ∗Z)HC

= (W,Z)HC + (Υ−1DW,DZ)HC,

(2.2.28)

where it is clear that B is symmetric and positive definite if Υ is positive definite.
Regrettably, both operators A and B are nonlocal whenever G is nonlocal. This is not a

problem in one dimension because the operator G is always local. However, in higher dimensions
we need an efficient numerical method with local operators. We show later that if we rearrange
the assembly of A , then A U can be computed efficiently. The computation is efficient because
we can use a large class of fast iterative solvers. For the operator B, we note

S B = S + D†MΥD , (2.2.29)

is banded so that B−1 = (S B)−1S is the product of the inverse of a banded matrix and
a banded matrix. The structure of the the operator B is related to compact finite difference
schemes. More explicitly, we take the discrete flux

W = GU = S −1D†MU. (2.2.30)

Applying the operator S to both sides of (2.2.30) yields

SW = D†MU, (2.2.31)

where S and D†M are banded. So (2.2.31) is a compact representation of the fluxes.

10

2.2.9 The Computational Sequence

We can solve the diffusion equation using two approaches: solve (2.2.25) for U ; or solve (2.2.26)
for W and then recover U from W . We have observed that the operator A = Υ + DG is
generally nonlocal, particularly in higher dimensions, and thus is not practical. A major difficulty
is rearranging the equation (2.2.25) so that G is to the left of D , for which the solution would
be efficient to compute.

To compute A U efficiently we reintroduce the flux W = GU and note that W satisfies
(2.2.31), SW = D†MU , which can be solved for W with standard methods because S is
symmetric positive definite. Then A U = ΥU + DW . This approach requires the computation
of W as an intermediate step so we will devote our attention to a flux based algorithm and not
pursue this approach further.

The operator B, as noted earlier, is nonlocal, but since S B is local we combine (2.2.26)
multiplied by S to obtain

(S + D†MΥ−1D)Wn+1 = D†MΥ−1Fn+1, (2.2.32)

which is convenient for computation because (2.2.32) has a local stencil. In fact, in one dimension
the matrix (S + D†MΥ−1D) is tridiagonal. To see the properties of the coefficient matrix for
W in (2.2.32), we note[(

S + D†MΥ−1D
)
W,W

]
HC

= [SW,W]HC +
[
D†MΥ−1DW,W

]
HC

= [SW,W]HC +
[
MΥ−1DW,DW

]
HC

≥ ξ2‖W‖HC +
ξ1
C
‖DW‖HC ,

(2.2.33)

where the constants ξ1, ξ2 and C are defined in (2.2.6) and (2.2.22) respectively. Thus, the
coefficient matrix for W is symmetric and positive definite.

We solve the matrix equation (2.2.32) with Gauss-Seidel; however other iterative algorithms
for the symmetric positive system are available. For example, SOR or conjugate gradient [11].
The coefficient matrix in (2.2.33) is symmetric positive definite for any type of boundary condi-
tions - Dirichlet, Neumann, or Robin - which is convenient for computation.

After the fluxes Wn+1 are computed from (2.2.33), the temperature is computed from the
explicit formula

Un+1 = Υ−1
(
Fn+1 −DWn+1

)
. (2.2.34)

2.3 Null Space of the Discrete Flux Operator

An important property of the gradient is that ∇u = 0 implies that u is a constant function.
Because k > 0, this is the same as −k∇u = 0 implies that u is a constant. The same result holds
for the discrete flux operator derived in Sec. 2.2.5. To see this, assume that GU = 0 where G is
defined in (2.2.18). Thus, we have on the interior

(GU)i = −
[
1
2

(
hi+1/2

ki+1/2
+
hi−1/2

ki−1/2

)]−1(
U

i+
1
2
− U

i− 1
2

)
= 0. (2.3.1)

Then Eq. (2.3.1) gives
U

i+
1
2

= U
i− 1

2
, (2.3.2)

for i = 2, . . . , N − 1. A similar result holds for the boundary terms. The Eq. (2.3.2) implies that
U is constant in i, so U is a constant function.

11

We have shown that the constant functions are in the null space of the discrete flux. However,
we must show that they are the only members of the null space. It is sufficient to show that
the null space of the operator G is one dimensional. The discrete flux G : HC → HC maps
cell-centered values to cell face values. If we include the boundary conditions in the discrete
temperatures U , then the matrix G ∈ RN×N+1. We note that the matrix components of G have
dimension S −1 ∈ RN×N and D†M ∈ RN×N+1. Clearly the matrix S has rank(N) as it is
invertible. From the bidiagonal structure of the differencing operator D†M it is straightforward
to determine the matrix G has rank(N). Thus the null space of G is one dimensional and contains
the constant functions.

The property that the null space of the discrete flux contains only the constant functions,
just as the differential operator −K∇, is important in numerical schemes. For numerical schemes
that do not have this property typically the highest-frequency mode is also in the null space of
the discrete gradient [12]. A special filtering procedure is required, like that of Margolin [10].

3 Non-Linear Heat Conductivity

The diffusion equation (2.1) only models linear heat conductivity. In Sec. 2 we allow k to be
discontinuous at cell interfaces. A discontinuous k gives the ability to model linear diffusion
across material interfaces. In certain applications, like hydrodynamics, problems with non-linear
diffusion become important [2]. To generalize the equation (2.1) to admit non-linear diffusion we
take the heat conductivity to be a function of the temperature, i.e., define the heat conductivity
κ ≡ κ(u). We present numerical results for non-linear heat conductivity in Secs. 5.2.3 and 5.3.

We assume that there is no forcing of the non-linear equation, i.e, f ≡ 0 in (2.1). Next, we
introduce the non-linear heat flux

w = −κ(u)∂u
∂x
, (3.1)

to rewrite the diffusion equation (2.1) as the first order system
a
∂u

∂t
+
∂w

∂x
= 0,

w = −κ(u)∂u
∂x
,

(3.2)

with some initial condition and set of boundary conditions. As a simplifying assumption we take
the non-linearity in the heat flux (3.1) to manifest itself as a power α ∈ R on the temperature
u. That is, we consider the non-linear flux to be of the form

w = −κ(u)∂u
∂x

= −kuα ∂u

∂x
. (3.3)

The non-linearity in the first-order system (3.2) makes the heat equation more difficult to
solve numerically. Thus, we employ a non-linear transformation

θ = uα+1. (3.4)

From the chain rule we find the time derivative of θ

∂θ

∂t
= uα(α+ 1)

∂u

∂t
, (3.5)

and similarly the spatial derivative of θ

∂θ

∂x
= uα(α+ 1)

∂u

∂x
. (3.6)

12

We use the time and space derivatives of the non-linear transformation (3.5) and (3.6) to rewrite
the first-order system (3.2) in such a way that the heat conductivity κ does not depend on the
temperature. The transformed system in the new variable θ is

ā
∂θ

∂t
+
∂w

∂x
= 0

w = −k̄ ∂θ
∂x

, (3.7)

where
ā =

a

θα/α+1(α+ 1)

k̄ =
k

α+ 1
.

(3.8)

Again we assume that we have some initial condition and set of boundary conditions to close the
system (3.7).

The system of equations (3.7) has an identical form to the linear heat equation written as
a first-order system. The only difference is the constants a and k are altered by the non-linear
transformation (3.4). Conveniently we can apply the same MFD scheme, with altered constants
ā and k̄, to find the discrete non-linear fluxes W . Another advantage is the MFD scheme treats
the computation of the fluxes in a fully implicit way. Thus, we know that the numerical method
is stable and accurate when applied to non-linear problems.

On a general, non-uniform one dimensional grid the non-linear fluxes are found using the
scheme

− ∆t
ān

i− 1
2

h
i− 1

2

Wn+1
i−1 +

1
2

hi− 1
2

k̄n

i− 1
2

+
hi+ 1

2

k̄n

i+
1
2

+
∆t

ān

i− 1
2

h
i− 1

2

+
∆t

ān

i+
1
2

h
i+

1
2

Wn+1
i

− ∆t
ān

i+
1
2

h
i+

1
2

Wn+1
i+1 = Θn

i− 1
2

−Θn

i+
1
2

,

(3.9)

where Θn
i+1/2 is the cell-centered value of the non-linear transformation (3.4) in cell i+ 1

2 at time
level n. The implicit scheme (3.9) yields a tridiagonal, symmetric positive-definite matrix to
compute the discrete non-linear fluxes W . We solve the system for W using Gauss-Seidel. Once
the non-linear fluxes are computed, we recover the discrete temperature function U in each cell
from a discretization of the first equation in (3.2)

Un+1

i+
1
2

= Un

i+
1
2

− ∆t
a

i+
1
2

Wn+1
i+1 −Wn+1

i

h
i+

1
2

. (3.10)

4 Generalizations of the Mimetic Finite Difference Scheme

A problem of interest is to accurately model the heat diffusion across a material interface located
inside a cell. The global method derived in Sec. 2 accurately handles material discontinuities as
long as the material interface coincides with a cell interface, i.e., all cells are pure. We verify the
accuracy of the global method in Sec. 5.1. However, it may not be the case that the material
interface lies on a cell interface, for example, if the material moves in time.

13

Another interesting problem arises after we compute the temperature on a mesh that contains
cells with a mixture of material properties, deemed a mixed cell. We have a single, cell-centered
value for the temperature in a mixed cell, which we think of as a total amount of heat. How
can we recover the temperature values on either side of the interface from the total heat? We
describe a limited linear reconstruction technique to recover the values on either side of a material
interface in a mixed cell.

4.1 Diffusion in a Mixed Cell

An option for multiple material problems is to move the mesh and track the material inter-
face to ensure it is always placed on a cell interface. But moving mesh methods may become
computationally expensive in higher dimensions [3]. Also, we do not want to introduce extra
degrees of freedom due to possible mesh refinement required to place a material interface on a
cell boundary. Instead we describe two methods to generalize the MFD scheme to operate on
meshes with mixed cells, homogenization and condensation.

For the remainder of this report we assume any mixed cell has only two components with heat
conductivities kL and kR. Also, we denote the location of the material interface as x∗ ∈ (xi, xi+1)
when the i+ 1

2 cell is mixed. We denote the distances on either side of the material interface in
the mixed cell as hL = x∗ − xi and hR = xi+1 − x∗.

4.1.1 Technique of Homogenization

A tactic to extend the MFD scheme is to homogenize the material properties in the mixed cell.
The discrete flux operator in the global MFD method (2.2.18) requires a heat conductivity value
k for each cell. However, in a mixed cell it is not immediately clear what value to choose for k.
Obviously we could just assign the left or right material property to the mixed cell but this is
unphysical. In homogenization we determine an average material property k̄ which we assign to
the mixed cell.

There are many choices for the calculation of k̄. A few of the choices are the volume weighted
harmonic mean

k̄ =
hi+1/2(

hL

kL
+ hR

kR

) , (4.1.1)

the volume weighted arithmetic mean

k̄ =
hL

hi+1/2
kL +

hR

hi+1/2
kR, (4.1.2)

and volume weighted geometric mean

k̄ = exp
(
hL log(kL)
h1+1/2

+
hR log(kR)
hi+1/2

)
. (4.1.3)

With a heat conductivity value assigned to any mixed cells we can proceed in the normal
fashion with the global discretization outlined in Sec. 2. In mixed cells, we calculate the cell-
centered value which represents the total heat. The recovery of the temperature on either side of
the material interface is a post-processing step. We explore the effect the homogenization has on
the order of the method in Sec. 5.2.1 and which volume weighted mean coupled with a limited
linear reconstruction produces the most accurate results for the recovered temperature values in
Secs. 5.2.2 and 5.2.3.

14

4.1.2 A Local Reformulation with Condensation

Rather than homogenizing the material properties in a mixed cell and applying the global method
derived in Sec. 2, we rederive the MFD scheme using a local version of the SOM. The local
derivation gives extra flexibility in the mixed cell and allows us to alter the stencil of the scheme
to respect the material interface. The stencil is augmented by introducing intermediate degrees
of freedom at the material interface. We eliminate the new degrees of freedom using continuity
assumptions. This is the process of condensation, for details in two dimensions see the work by
Kuznetsov [7, 8].

We begin with the one dimensional domain Ω = [x1, xN] which we break into N − 1 non-
overlapping cells denoted ei+1/2. The local method is derived on a single cell ei+1/2. We will
show that the local and global support operators method are equivalent, on pure cells, in that
they produce the same flux components and cell-centered temperature values. That is, the two
methods represent the same discrete operator but differ in their choice of independent variables.

We derive the local method in cell ei+1/2 which we assume is mixed. In the mixed cell there is
a material interface located at x∗ ∈ (xi, xi+1). We define the degrees of freedom in our problem
to be a cell-centered value for temperature Ui+1/2 and face centered values for the temperature
Ui, Ui+1 and flux (GU)i, (GU)i+1. In the condensation method we introduce an intermediate
discrete flux value, (GU)∗, at x∗ which we eliminate later.

With the degrees of freedom defined we discretize the Gauss-Green theorem, which in one
spatial dimension is just integration by parts, on a single cell∫ xi+1

xi

u
∂w

∂x
dx+

∫ xi+1

xi

w
∂u

∂x
dx = uw

∣∣∣xi+1

xi

. (4.1.4)

The cell is mixed, so we split the integrals on the left side of (4.1.4) along the interface to obtain∫ x∗

xi

u
∂w

∂x
dx+

∫ xi+1

x∗
u
∂w

∂x
dx+

∫ x∗

xi

wk−1
L

(
kL
∂u

∂x

)
dx+

∫ xi+1

x∗
wk−1

R

(
kR
∂u

∂x

)
dx = uw

∣∣∣xi+1

xi

,

(4.1.5)
where we have scaled the last two integrals by the heat conductivity coefficient k on either side
of the material interface.

To simplify the expressions in (4.1.5) we introduce the flux G = −k ∂
∂x for either value of

k. To keep the discussion general and extendable to two dimensions we need to keep track of
which functions are analogs of scalars and which are analogs of vectors as well as which derivative
operations in (4.1.5) correspond to the divergence or the gradient. In this section we take u to
be a scalar function and w, Gu to be vector functions. Just as in Sec. 2, derivatives that act on
u are analogous to the gradient and derivatives that act on w are analogous to the divergence.
As with the global derivation using the support operators method we select the divergence to be
the prime operator. The divergence is defined as before in (2.2.7) by

∂w

∂x
≈ wi+1 − wi

h
i+

1
2

. (4.1.6)

From the discrete divergence operator we determine the discrete flux operator.
First we equip the spaces of scalar and vector functions with discrete inner products. Ef-

fectively this means we select a quadrature technique to approximate the integrals in (4.1.5).
It is natural to select midpoint rule for the first two integrals in (4.1.5) because the discrete
information for u is cell-centered. Similarly, the last two integrals in (4.1.5) are discretized using
trapezoid rule because the discrete information for fluxes is at the edges of the cell. Applying

15

the two quadrature rules we find∫ x∗

xi

u
∂w

∂x
dx ≈ U

i+
1
2
(w∗ − wi)∫ xi+1

x∗
u
∂w

∂x
dx ≈ U

i+
1
2
(wi+1 − w∗)∫ x∗

xi

wk−1
L Gu dx ≈ wi(GU)i + w∗(GU)∗

2kL
hL∫ xi+1

x∗
wk−1

R Gu dx ≈ w∗(GU)∗ + wi+1(GU)i+1

2kR
hR,

(4.1.7)

where hL = x∗ − xi and hR = xi+1 − x∗.
We eliminate the extra degree of freedom introduced at the material interface with the as-

sumption that the divergence in the left portion of the mixed cell is the same as the divergence
across the entire cell, i.e.,

w∗ − wi

hL
=
wi+1 − wi

h
i+

1
2

. (4.1.8)

The same assumption about the divergence in a portion of the mixed cell is made by Kuznetsov
[7, 8]. We solve for the intermediate flux value w∗ to find

w∗ =
hRwi + hLwi+1

h
i+

1
2

. (4.1.9)

A similar argument as (4.1.8) is used to find an identical expression to (4.1.9) for the interme-
diate flux (GU)∗. The expressions for w∗ and (GU)∗ are substituted in the last two integral
approximations in (4.1.7). Noting that the values for wi+1 and wi are arbitrary and combining
the integral identity (4.1.5), the integral approximations (4.1.7), and the intermediate flux value
(4.1.9) we arrive at two equations for for the two unknowns (GU)i and (GU)i+1

hL

2kL

hLhR

h2

i+
1
2

(GU)i +
h2

L

h2

i+
1
2

(GU)i+1

+
hR

2kR

hLhR

h2

i+
1
2

(GU)i +

1 +
h2

L

h2

i+
1
2

 (GU)i+1

= −(Ui+1 − U

i+
1
2
)

hL

2kL

1 +
h2

R

h2

i+
1
2

 (GU)i +
hLhR

h2

i+
1
2

(GU)i+1

+
hR

2kR

 h2
R

h2

i+
1
2

(GU)i +
hLhR

h2

i+
1
2

(GU)i+1

= −(U

i+
1
2
− Ui).

(4.1.10)
We collect like terms and rewrite (4.1.10) as a matrix equation

h2
LhR

2kLh2
i+1/2

+ hLh2
R

2kRh2
i+1/2

h3
L

2kLh2
i+1/2

+ hR

2kR

(
1 + h2

L

h2
i+1/2

)
hL

2kL

(
1 + h2

R

h2
i+1/2

)
+ h3

R

2kRh2
i+1/2

h2
LhR

2kLh2
i+1/2

+ hLh2
R

2kRh2
i+1/2

[(GU)i

(GU)i+1

]
= −

Ui+1 − U
i+

1
2

U
i+

1
2
− Ui

 .
(4.1.11)

The matrix equation (4.1.11) is always non-singular, so we can find general expressions for the
fluxes (GU)i and (GU)i+1 in the mixed cell. The expressions are unwieldy and not illuminating,

16

so they are omitted. In one dimension it is laborious, but not difficult to create explicit formulae
for the edge fluxes in the mixed cell. However, in two dimensions such analytical computations
will become unnecessarily difficult and labor intensive. Thus, it is likely that in higher dimensions
the matrix system to determine the edge fluxes will be assembled and solved numerically.

Rather than repeating the local derivation for a pure cell we consider, without loss of gen-
erality, hL = 0 and hR = hi+1/2. The equations for the edge fluxes given by (4.1.11) simplify
considerably to

(GU)i = −
[
hi+1/2

2ki+1/2

]−1(
U

i+
1
2
− Ui

)
,

(GU)i+1 = −
[
hi+1/2

2ki+1/2

]−1(
Ui+1 − U

i+
1
2

)
.

(4.1.12)

We have a local approximation on each cell whether it is mixed or pure. Next we create a
global method on the entire domain Ω = [x1, xN] by connecting the local approximations using
continuity assumptions. We assume that the face temperatures and normal fluxes are equal at
cell interfaces. For the one dimensional problem the continuity assumptions give

U
i− 1

2
i = U

i+ 1
2

i and (GU)i+1/2
i − (GU)i−1/2

i+1 = 0, (4.1.13)

where the superscripts denote the cell in which the temperature and flux are located. The
continuity conditions (4.1.13) allow us to find an expression for the cell interface temperature
values in terms of the cell-centered values.

First we examine the pure cells as the algebra is simpler. From the continuity assumptions
(4.1.13) and the local fluxes (4.1.12) we find the cell edge temperature values to be

Ui =
[

ki+1/2

0.5hi+1/2
+

ki−1/2

0.5hi−1/2

]−1(ki+1/2

0.5hi+1/2
U

i+
1
2

+
ki−1/2

0.5hi−1/2
U

i− 1
2

)
, (4.1.14)

where i = 2, . . . , N − 1. The values for U1 and UN are handled by the boundary conditions. If
we use the expression for the cell interface temperature values (4.1.14) in the first expression for
the fluxes in (4.1.12) we find

(GU)i = −
[
1
2

(
hi+1/2

ki+1/2
+
hi−1/2

ki−1/2

)]−1(
U

i+
1
2
− U

i− 1
2

)
, (4.1.15)

which is the same discrete flux operator (2.2.18) at interior cell interfaces derived in the global
SOM described in Sec. 2. Thus, the local derivation using condensation and the global method
are equivalent in the pure cells as both derivations lead to the same discrete operator. However,
the local SOM allows us the freedom to develop a more complicated discrete flux that alters the
differencing at a material interface located within a cell.

Next we consider the flux at the cell interfaces of the mixed cell. Again, we use the continuity
assumption (4.1.13) to determine the interface temperature values in terms of the neighboring
cell-centered values. Let us assume that cell i+ 1

2 is mixed. The process to determine analytical
expressions for Ui and Ui+1 is fairly involved and the final expressions are unwieldy so we omit
them. In turn, we use the analytical expressions for Ui and Ui+1 in the mixed cell to rewrite
the fluxes (GU)i and (GU)i+1, which are the solution of the matrix equation (4.1.11), to depend
only on cell-centered values. The process of rewriting the mixed cell fluxes to depend only
cell-centered temperature values is especially algebraically involved. However, it is possible to
determine analytical expressions of the fluxes (GU)i and (GU)i+1 in one dimension. We omit
the analytical expressions of the mixed cell fluxes, but discuss some of the important results.

17

The local condensation method alters the coefficients and differencing in the discrete flux
for the mixed cell. The flux calculation will depend on Ui−1/2, Ui+1/2, and Ui+3/2. The local
method changes the entries of the operator S in (2.2.19) near the mixed cell. The matrix S is
still predominantly diagonal but has non-trivial blocks for the calculation near the mixed cell.
The newly derived method augments D†M in (2.2.20) to be tridiagonal, though D†M remains
largely bidiagonal with the only non-trivial subdiagonal entries occurring around the indices of
the mixed cell. So the discrete gradient calculation in the mixed cell is no longer a backward
difference operation as we saw in the global method and (4.1.15). Instead we have a centered
difference with more complicated coefficients than the harmonic average found in (2.2.18).

4.2 New Material Temperatures in Mixed Cells

Either homogenization or condensation coupled with the MFD scheme allow us to apply the
numerical method to meshes with mixed cells. Now we address the problem of how to recover the
temperature on either side of the material interface in a mixed cell. We denote the reconstructed
temperature values on the left or right of the material interface as UL and UR respectively. We
need two equations to form a closed system to determine the two unknown values UL and UR.

Without loss of generality we assume that the i + 1
2 cell is mixed. The cell-centered value

Ui+1/2 represents the total heat in the mixed cell. One of the equations in the system to determine
UL and UR guarantees that we do not create any new heat in the mixed cell

hLUL + hRUR = hi+ 1
2
Ui+ 1

2
. (4.2.1)

For simplicity we assumed a mixed cell contains two components. It is reasonable to define the
relationship

UR = UL + ∆U, (4.2.2)

where ∆U represents some unknown change in the temperature across the material interface.
We write the two equations (4.2.1) and (4.2.2) in matrix form to find[

hL hR

−1 1

] [
UL

UR

]
=
[
hi+ 1

2
Ui+ 1

2

∆U

]
. (4.2.3)

The determinant of the coefficient matrix in (4.2.3) is hL + hR = hi+1/2 6= 0. So the system
of the equations (4.2.3) always produces a unique solution for UL and UR. Inverting the 2 × 2
system in (4.2.3) gives a closed form for UL and UR

UL = Ui+ 1
2
− hR

hi+ 1
2

∆U,

UR = Ui+ 1
2
− hL

hi+ 1
2

∆U.
(4.2.4)

We introduce a new degree of freedom ∆U and require a method to determine its value. Once
that value is found it is simple to calculate UL and UR from (4.2.4). To determine ∆U we use a
limited linear reconstruction of the solution in the mixed cell

UR = UL +
(
∂U

∂x

)lim

(xR − xL), (4.2.5)

where (∂U/∂x)lim is the limited derivative approximation, xR = (xi+1 + x∗)/2, and xL =
(xi + x∗)/2. From (4.2.2) and (4.2.5) we know,

∆U =
(
∂U

∂x

)lim

(xR − xL). (4.2.6)

18

There is some freedom in how we choose the limited derivative reconstruction (∂U/∂x)lim. We
discuss the minmod and Barth-Jespersen limiters but other options are available.

The idea of a limited linear reconstruction is more general than given in (4.2.5). A linear
reconstruction valid anywhere in cell i+ 1

2 is given by

U(x) = Ui+ 1
2

+
(
∂U

∂x

)lim

(x− xi+ 1
2
), x ∈ [xi, xi+1], (4.2.7)

where we recover the reconstruction in (4.2.5) if we center the general reconstruction (4.2.7)
at xL and evaluate at xR. The limited linear reconstruction used to determine ∆U and solve
for UL and UR in (4.2.4) is discussed in one dimension but the extension to two dimensions is
straightforward. The conservation condition (4.2.1) changes slightly to involve volumes and the
linear reconstruction becomes more complicated, for details, see [9].

The assumption of two components in a mixed cell does not constrain the linear reconstruction
procedure, only simplifies the discussion. For example, if the mixed cell contained three materials,
then we would want to determine three intermediate values, say, UL, UM , and UR. The heat
conservation condition (4.2.1) simply has hMUM added to the left hand side. Next we introduce
two equations to close the system

UM = UL + ∆U1 and UR = UM + ∆U2, (4.2.8)

where we now have two unknown changes in temperature across the material interfaces ∆U1 and
∆U2. These two unknowns are found from two separate limited linear reconstructions. One can
see how the process can generalize to an arbitrary number of materials. Thus, the method for
recovering temperature values in mixed cells we discuss is generalizable to higher dimensions as
well as an arbitrary number of materials.

4.2.1 minmod in One Dimension

A popular choice for the cell-centered derivative of temperature, (∂U/∂x)lim, is termed the
minmod method [13]. The method compares one-sided derivative approximations with respect
to cell i+ 1

2 (
∂U

∂x

)L

=
Ui+ 1

2
− Ui− 1

2

xi+ 1
2
− xi− 1

2

and
(
∂U

∂x

)R

=
Ui+ 3

2
− Ui+ 1

2

xi+ 3
2
− xi+ 1

2

. (4.2.9)

The minmod derivative is defined as(
∂U

∂x

)lim

=

{
0, if

(
∂U
∂x

)L · (∂U
∂x

)R
< 0

sign
((

∂U
∂x

)L) ·min
(∣∣∣(∂U

∂x

)L∣∣∣ , ∣∣∣(∂U
∂x

)R∣∣∣) , otherwise
. (4.2.10)

If the derivative changes sign across the mixed cell, then (∂U/∂x)lim is set to zero. When the
left and right derivatives (4.2.9) have the same sign, then the one with the smaller absolute
value is chosen. We explore the accuracy and convergence using the minmod limiter (4.2.10)
to determine ∆U and compare it to Barth-Jespersen in Sec. 5.2.2 for linear problems and Sec.
5.2.3 for non-linear problems.

4.2.2 Barth-Jespersen in One Dimension

An alternative approach to determine (∂U/∂x)lim is based on the Barth-Jespersen algorithm [1].
We start from the general linear reconstruction in cell i + 1

2 given in (4.2.7). We impose two

19

conditions on the reconstruction. First, it must be exact for linear functions. Second, it should
not create any new local extrema. We define a maximum and minimum value from cell-centered
values in the neighbors of cell i+ 1

2 as follows

Umin = min
k=±1

(
Ui+ 1

2+k

)
and Umax = max

k=±1

(
Ui+ 1

2+k

)
, (4.2.11)

then
Umin ≤ U(x) ≤ Umax, x ∈ [xi, xi+1]. (4.2.12)

Note that if all the cell-centered values are positive, then the reconstruction should produce a
positive function.

The first step in the Barth-Jespersen reconstruction is to create an unlimited linear recon-
struction using an unlimited derivative(

∂U

∂x

)unl

=
Ui+ 3

2
− Ui− 1

2

0.5
(
hi+ 3

2
+ hi− 1

2

)
+ hi+ 1

2

. (4.2.13)

With the unlimited derivative (4.2.13) we create an intermediate unlimited linear reconstruction

Uunl(x) = Ui+ 1
2

+
(
∂U

∂x

)unl (
x− xi+ 1

2

)
, x ∈ [xi, xi+1]. (4.2.14)

For the limited reconstruction (4.2.5) we represent the derivative as(
∂U

∂x

)lim

= Φi+ 1
2

(
∂U

∂x

)unl

(4.2.15)

where the limiter function Φi+1/2 is contained in the interval 0 ≤ Φi+1/2 ≤ 1, and is chosen to
satisfy our two conditions – the reconstruction is exact for linear functions and does not create
any new local extrema. Because the reconstruction (4.2.7) is linear it is sufficient to enforce our
conditions at the endpoints of the one dimension cell (vertices of the cell in two dimensions).

Let us consider the endpoint xi. From the unlimited linear reconstruction (4.2.14) we have

Uunl(xi) = Ui+ 1
2

+
(
∂U

∂x

)unl (
xi − xi+ 1

2

)
, (4.2.16)

and for the limited reconstruction we have

U lim(xi) = Ui+ 1
2

+ Φi+ 1
2

(
∂U

∂x

)unl (
xi − xi+ 1

2

)
. (4.2.17)

Manipulating (4.2.16) and replacing in (4.2.17) we obtain

U lim(xi)− Ui+ 1
2

= Φi+ 1
2

(
Uunl(xi)− Ui+ 1

2

)
. (4.2.18)

Now, because 0 ≤ Φi+1/2 ≤ 1 we infer that if the unlimited function is increasing/decreasing
in the center of cell i + 1

2 to the endpoint xi, then the limited reconstruction is also increas-
ing/decreasing.

Next, suppose
Uunl(xi)− Ui+ 1

2
> 0, (4.2.19)

20

that is, the unlimited and limited functions are both increasing. We require, as one of our
conditions, that the limited value at xi be smaller than the maximum

U lim(xi) ≤ Umax. (4.2.20)

From (4.2.18) we find a sufficient bound on Φi+1/2 to ensure no new local extrema to be

Φi+ 1
2
≤ Umax − U lim(xi)

Uunl(xi)− Ui+ 1
2

. (4.2.21)

In order for the reconstruction to preserve linear functions we have the more restrictive condition
on Φi+1/2

Φi+ 1
2
≤ min

(
1,
Umax − U lim(xi)
Uunl(xi)− Ui+ 1

2

)
. (4.2.22)

A similar process can be applied to the case where

Uunl(xi)− Ui+ 1
2
< 0, (4.2.23)

to find the condition

Φi+ 1
2
≤ min

(
1,
Umin − U lim(xi)
Uunl(xi)− Ui+ 1

2

)
. (4.2.24)

Finally, if
Uunl(xi)− Ui+ 1

2
= 0, (4.2.25)

then we choose Φi+1/2 = 1. Summarizing,

Φi
i+ 1

2
=

min

(
1, Umax−U lim(xi)

Uunl(xi)−U
i+ 1

2

)
, if Uunl(xi)− Ui+ 1

2
> 0

min
(

1, Umin−U lim(xi)
Uunl(xi)−U

i+ 1
2

)
, if Uunl(xi)− Ui+ 1

2
< 0

1, if Uunl(xi)− Ui+ 1
2

= 0

. (4.2.26)

To satisfy our conditions at all endpoints of the one dimensional cell we define

Φi+ 1
2

= min
k=0,1

(
Φi+k

i+ 1
2

)
(4.2.27)

We use Φi+1/2 from (4.2.27) to compute the limited cell-centered derivative (∂U/∂x)lim given
in (4.2.15). Now, we have all the pieces necessary to compute the value of ∆U shown in (4.2.6) and
finally recover the values of UL and UR from (4.2.4). We explore the accuracy and convergence
of the Barth-Jespersen as a mechanism for obtaining new material temperatures for linear and
non-linear problems in Secs. 5.2.2 and 5.2.3 respectively.

5 Numerical Results

We test the MFD scheme on non-uniform one dimensional meshes for a variety of problems. In
Sec. 5.1 we confirm the theoretical second-order convergence rate of the algorithm [4]. Also, we
test to ensure that the method recovers linear and piecewise linear solutions exactly (to numerical
double precision). In Sec. 5.2.2 we examine the convergence and accuracy of the limited linear
reconstruction techniques to recover temperature values in mixed cells for linear diffusion. In
Sec. 5.2.3 we perform a similar analysis on non-linear diffusion. Finally, in Sec. 5.3 we perform
a numerical experiment where we propagate a heat wave across a material interface.

21

5.1 Convergence of Global Mimetic Finite Difference Method

For the numerical results throughout this section we take a test problem for the diffusion equation
(2.1) on the unit interval Ω = [0, 1]. We consider Dirichlet boundary conditions where

U1 = 0 and UN = 1, (5.1.1)

so we take the discrete divergence D to be 0 at x1 and xN , in the discrete operator Υ (2.2.21) we
take α1 = αN = 1, and in the discrete right hand side Fn+1 (2.2.23) we take ψ1 = 0, ψN = 1.
Also, we take a = 1/30.

5.1.1 Second-Order Convergence on Non-Uniform Mesh

We test the MFD scheme on a non-uniform mesh to ensure we obtain the second-order conver-
gence of the method. For the convergence test we take the heat conductivity to be a constant
k = 1/100. We use the method of manufactured solutions to create a test problem for the
diffusion equation (2.1). The exact solution is prescribed as

u =
1
6
x3. (5.1.2)

For (5.1.2) to be a solution to the diffusion equation (2.1) the forcing function f must be

f = −kx. (5.1.3)

To verify the second-order convergence of the algorithm we use the ∞-norm of the error. To
compute the error we evaluate the exact solution (5.1.2) at the cell-centers and physical boundary.
Tab. 1 gives the results of the convergence analysis. We obtain second-order convergence, if the
number of mesh points is doubled the error is reduced by approximately a factor of four.

N ‖u− U‖∞ Rate

10 3.0066E-03 —
20 7.3227E-04 2.06
40 1.7964E-04 2.04

Table 1: Second-order convergence for mimetic finite difference scheme.

5.1.2 Linear and Piecewise Linear Solutions

The MFD scheme is second-order, a fact we verify in the previous section. Therefore the method
should recover linear and piecewise linear solutions exactly, to numerical precision. First we
verify this fact for a linear problem.

We take the heat conductivity to be a constant k = 1/100. The linear test problem has the
linear steady-state solution

u = x. (5.1.4)

As before, we compute the ∞-norm of the error between the exact solution (5.2.3) and the
computed solution U . We verify the numerical double precision accuracy of the method to
recover a linear solution for two values on N . We present the results for recovering a linear
solution in Tab. 2(A).

22

Next we test the recovery of a piecewise linear solution. We take the heat conductivity to be
piecewise constant

k =
{

kL = 1/10, if 0 ≤ x < 0.5,
kR = 1/100, if 0.5 < x ≤ 1. (5.1.5)

The piecewise linear test problem has the steady-state solution

u =

{
2kR

kL+kR
x, if 0 ≤ x < 0.5,

2kL

kL+kR
x+ kR−kL

kL+kR
, if 0.5 < x ≤ 1.

(5.1.6)

In the case when kL = kR = k, the exact solution (5.1.6) is identical to the solution (5.1.4).
The test problem with piecewise constant solution is solved on a non-uniform one dimensional
mesh where we ensure a cell interface coincides with the material discontinuity at x = 0.5. The
method is exact to numerical double precision and we present results in Tab. 2(B).

Linear Solution Piecewise Linear Solution
N ‖u− U‖∞
13 3.8304E-15
26 1.0325E-14

N ‖u− U‖∞
13 6.2728E-15
26 1.6764E-14

(A) (B)

Table 2: The MFD scheme recovers linear and piecewise linear solutions to numerical double pre-
cision.

5.2 Numerical Tests on a Mixed Cell

In Sec. 5.1.2 we saw the MFD scheme recover piecewise linear solution exactly, to numerical
double precision, if the material discontinuity is placed on a cell interface. Pursuant to the dis-
cussion in Sec. 4 we relax this requirement and allow the material discontinuity to lie somewhere
in a cell. Recall we denoted a cell that contains a material interface as mixed. We test the
effect the presence of a mixed cell has on the order of the method. We also test the convergence
rate when we handle the mixed cells using the homogenization technique from Sec. 4.1.1. The
limited linear reconstruction mechanism outlined in Secs. 4.2 is used to obtain new material
temperatures.

For tests in this section we measure the error in our computation using the ∞-norm to test
convergence. So we may compare our results to the computational results found in Kucharik [6]
we also measure the error with the relative L1 norm

L1 =
1

Ncells

∑
cells

|u− U |∑
cells

u
, (5.2.1)

where u is the analytical solution evaluated at the cell centers and U is the computed solution.
Note we omit the values at the boundary as they are exact, so the contribution to the overall
error is zero.

5.2.1 Convergence Analysis of Homogenization Methods

We investigate the homogenization procedure and its effect on the order of the numerical method.
To analyze the convergence we solve the linear diffusion equation (2.1) on the unit interval

23

Ω = [0, 1]. We again consider Dirichlet boundary conditions (5.1.1) and a = 1/30. We place a
material interface at x = 0.6125. We take the heat conductivity to be

k =
{

kL = 1/10, if 0 ≤ x < 0.6125,
kR = 1/100, if 0.6125 < x ≤ 1. (5.2.2)

The test problem has the analytical solution (5.1.6). The problem is solved up to time tfinal = 300
with a constant ∆t = 1/100.

We present the convergence results for each homogenization method coupled with theminmod
limited linear reconstruction in Tabs. 3 and the Barth-Jespersen reconstruction in Tabs. 4. All
the methods have first order convergence properties. The results in Tab. 3(A), Tab. 3(C), Tab.
4(A), and Tab. 4(C) show if we use either the weighted arithmetic mean or weighted geometric
mean as the homogenization technique and either limited linear reconstruction, then the errors
and convergence rate is unaffected. We see from Tab. 3(B) and Tab. 4(B) that the choice of
limiter is a factor is the size of the error for the weighted harmonic mean homogenization. The
Barth-Jespersen limiter produces slightly smaller errors, but the convergence rate is identical to
that of minmod.

The drop in the order of the method is possibly due to our imperfect knowledge of the location
of the material inteface. We only know that the interface lies somewhere in the interval [xi, xi+1]
for the mixed cell ei+1/2. The lack of foreknowldege of the interface location introduces an error
on the order of O(hi+1/2) for the mixed cell calculation. Thus, first order is likely the best we
can obtain for a numerical method coupled with homogenization.

Arithmetic Mean Harmonic Mean Geometric Mean
N ‖u− U‖∞ Rate

10 5.682E-02 —
20 2.970E-02 0.96
40 1.506E-02 0.99

N ‖u− U‖∞ Rate

10 3.505E-02 —
20 1.615E-02 1.06
40 7.867E-03 1.03

N ‖u− U‖∞ Rate

10 3.505E-02 —
20 1.861E-02 0.94
40 9.503E-03 0.98

(A) (B) (C)

Table 3: Convergence results for minmod limited reconstruction and the three homogenization
techniques.

Arithmetic Mean Harmonic Mean Geometric Mean
N ‖u− U‖∞ Rate

10 5.682E-02 —
20 2.970E-02 0.96
40 1.506E-02 0.99

N ‖u− U‖∞ Rate

10 2.273E-02 —
20 1.077E-02 1.06
40 5.245E-03 1.03

N ‖u− U‖∞ Rate

10 3.505E-02 —
20 1.861E-02 0.94
40 9.503E-03 0.98

(A) (B) (C)

Table 4: Convergence results for Barth-Jespersen limited reconstruction and the three homoge-
nization techniques.

5.2.2 Recover Intermediate Temperature Values - Linear Problem

Next we test the accuracy of the limited linear reconstruction mechanism to obtain intermediate
temperatures. We solve the linear diffusion equation (2.1) on the unit interval Ω = [0, 1] on a

24

mesh of 99 cells where the middle cell is twice the size of the remaining cells. Just as in Sec. 5.1
we take Dirichlet boundary conditions (5.1.1) and a = 1/30. We place a material interface at
x = 0.5 where the heat conductivity changes abruptly. We take the heat conductivity to be the
piecewise constant given in (5.1.5). The test problem has the analytical solution (5.1.6). The
problem is solved up to the final time t = 300 with ∆t = 1/100. The three homogenization
techniques from Sec. 4.1.1 and the two limiting strategies minmod and Barth-Jespersen are
compared.

We present the complete error analysis including the error in the recovered temperatures UL

and UR, the ∞-norm over the whole mesh, the ∞-norm over the pure cells, and the relative
L1 norm in Tab. 5. In general, for a given homogenization method, the error in the recov-
ered temperature values UL and UR is larger for the minmod limited reconstruction than the
Barth-Jespersen reconstruction. Overall the weighted harmonic mean produces the best results.
Although the weighted arithmetic mean and the weighted geometric mean produce accurate re-
sults too. All three homogenization techniques work well to solve the diffusion equation on a
mesh with a mixed cell. However, with any of the homogenization strategies the method loses
the ability to recover a piecewise linear solution exactly, to numerical double precision.

Method UL error UR error ‖ · ‖∞ ‖ · ‖∞ pure cells L1

Arithmetic, minmod 2.227E-03 4.925E-03 1.197E-02 1.197E-02 1.096E-04
Harmonic, minmod 5.909E-03 2.273E-03 5.909E-03 2.075E-12 2.698E-06
Geometric, minmod 3.415E-03 2.108E-03 7.560E-03 7.560E-03 6.969E-05
Arithmetic, Barth-Jesp 1.975E-03 4.674E-03 1.197E-02 1.197E-02 1.096E-04
Harmonic, Barth-Jesp 4.091E-03 4.091E-03 4.091E-03 2.075E-12 2.698E-06
Geometric, Barth-Jesp 2.754E-03 1.447E-03 7.560E-03 7.560E-03 6.926E-05

Table 5: Error analysis of the limited linear reconstruction mechanism to recover temperature
values in a mixed cell.

The∞-norm over the pure cells is included in Tab. 5 to quantify the effect the homogenization
technique has on the computation of the discrete temperatures in the pure cells. Again, we see
the weighted harmonic mean produces the best results. From Tab. 5 we see the weighted
harmonic mean homogenization still recovers a piecewise linear solution exactly, to numerical
double precision, in the pure cells. Also, comparing the relative L1 results from Tab. 5 with
the L1 results presented in the report by Kucharik we find that the limited linear reconstruction
mechanism to obtain intermediate temperatures outperforms any other mechanism discussed and
tested [6].

Figs. 1 - 6 plot close-ups of the results of the piecewise linear test problem on the 99 cell
mesh. As noted previously, the minmod limiting technique produces less accurate results than
the more sophisticated Barth-Jespersen limiter. We verify this fact in the “eyeball” norm. Figs.
1 - 6 also show the effect the different homogenization techniques have on the computation of the
discrete temperature in the pure cells. Generally, the weighted harmonic mean (4.1.1) produces
more accurate results in the “eyeball” norm than either the weighted arithmetic mean (4.1.2) or
the weighted geometric mean (4.1.3), just as we saw in the error analysis given in Tab. 5

25

0.06

0.08

0.1

0.12

0.14

0.44 0.46 0.48 0.5 0.52 0.54

y

x

Recover UL and UR in Mixed Cell using minmod and Weighted Arithmetic Mean

computed

3 3 3 3 3 3 3 3 3

3

3

3
3

exact
interface

mesh

Figure 1: Reconstructed temperature values in mixed cell using weighted arithmetic mean and
minmod limiter. The mesh is the overlay of dotted lines.

0.06

0.08

0.1

0.12

0.14

0.44 0.46 0.48 0.5 0.52 0.54

y

x

Recover UL and UR in Mixed Cell using Barth-Jespersen and Weighted Arithmetic Mean

computed

3 3 3 3 3 3 3 3
3

3

3

3
3

exact
interface

mesh

Figure 2: Reconstructed temperature values in mixed cell using weighted arithmetic mean and
Barth-Jesperson limiter. The mesh is the overlay of dotted lines.

26

0.06

0.08

0.1

0.12

0.14

0.44 0.46 0.48 0.5 0.52 0.54

y

x

Recover UL and UR in Mixed Cell using minmod and Weighted Harmonic Mean

computed

3 3 3 3 3 3 3

3
3

3

3

3
exact

interface
mesh

Figure 3: Reconstructed temperature values in mixed cell using weighted harmonic mean and minmod
limiter. The mesh is the overlay of dotted lines.

0.06

0.08

0.1

0.12

0.14

0.44 0.46 0.48 0.5 0.52 0.54

y

x

Recover UL and UR in Mixed Cell using Barth-Jespersen and Weighted Harmonic Mean

computed

3 3 3 3 3 3 3
3

3

3

3

3
exact

interface
mesh

Figure 4: Reconstructed temperature values in mixed cell using weighted harmonic mean and Barth-
Jesperson limiter. The mesh is the overlay of dotted lines.

27

0.06

0.08

0.1

0.12

0.14

0.44 0.46 0.48 0.5 0.52 0.54

y

x

Recover UL and UR in Mixed Cell using minmod and Weighted Geometric Mean

computed

3 3 3 3 3 3 3
3

3

3

3

3 3
exact

interface
mesh

Figure 5: Reconstructed temperature values in mixed cell using weighted geometric mean and
minmod limiter. The mesh is the overlay of dotted lines.

0.06

0.08

0.1

0.12

0.14

0.44 0.46 0.48 0.5 0.52 0.54

y

x

Recover UL and UR in Mixed Cell using Barth-Jespersen and Weighted Geometric Mean

computed

3 3 3 3 3 3 3
3

3

3

3

3 3
exact

interface
mesh

Figure 6: Reconstructed temperature values in mixed cell using weighted geometric mean and Barth-
Jesperson limiter. The mesh is the overlay of dotted lines.

28

5.2.3 Recover Intermediate Temperature Values - Non-Linear Problem

We investigate the accuracy of using a limited linear reconstruction technique, both minmod
and Barth-Jespersen, to recover intermediate heat values in a mixed cell for the non-linear heat
equation (3.7). To perform the numerical tests we use the analytical solution

u(x, t) =

{ (
αD
k [Dt+ s+ x]

) 1
α , if x > −Dt− s,
0, if x < −Dt− s.

(5.2.3)

The function (5.2.3) is a heat wave which solves the non-linear heat equation (3.7) everywhere
except at the point x = −Dt− s where the derivatives are not defined. This point corresponds
to the location of the head of the heat wave. The domain is taken to be Ω = [0, 6.2]. In the
computational experiments we use the analytical solution (5.2.3) evaluated at t = 0 as our initial
condition and the analytical solution evaluated at the endpoints of the one dimensional domain
u(x1, t) and u(xN , t) as the Dirichlet boundary conditions for the system (3.7). For all the tests
in this section we measure the error in our computation using the relative L1 norm given in
(5.2.1). The parameters in the analytical solution (5.2.3) are taken to be

α =
5
2
, D = 5, s = 1, k =

1
1000

. (5.2.4)

We solve the non-linear heat equation (3.7) on two meshes: a uniform mesh with 62 cells and
a mesh of 61 cells where the middle cell is twice as big as all other cells. On the second mesh we
artificially split the mesh into two materials. This is only a formality as the material properties are
the same in every cell. The split is performed because we are unable to construct the analytical
solution for a non-smooth conductivity coefficient. So even though material properties are the
same we use the limited linear reconstruction to recover the non-linear solution in a mixed cell.
We solve the problem up to time tfinal = 0.8 with ∆t = 1/10000. The solution on the mesh
with 62 cells does not have a mixed cell and is used as a baseline case.

In Tab. 6 we present a comparison of the relative L1 errors of the baseline, pure cell case
and all the different methods for homogenization and linear reconstruction. We see that all
the errors are comparable, a direct result of the constant conductivity coefficient. We account
for the slightly smaller error in the baseline, pure cell computation as a combination of the
method calculating on a pure cell mesh and the mesh contained one more cell than the other
computations, so the error is scaled by a slightly smaller number, as seen in (5.2.1). We compare

Method L1 error

Baseline, Pure Cell 2.17026E-06
Arithmetic Mean, minmod 2.62244E-06
Harmonic Mean, minmod 2.62244E-06
Geometric Mean, minmod 2.62244E-06
Arithmetic Mean, Barth-Jespersen 2.62244E-06
Harmonic Mean, Barth-Jespersen 2.62244E-06
Geometric Mean, Barth-Jespersen 2.62244E-06

Table 6: Comparison of the relative L1 error for each method of recovering temperature values.

our results in Tab. 6 to the results for an identical test problem in the technical report by
Kucharik [6]. Again, we find that the limited linear reconstruction mechanism for obtaining new
material temperatures for a non-linear problem is more accurate then all the methods described
in [6].

29

In Figs. 7 - 13 we plot the results for the numerical experiments. In each of the figures the
diamonds represent the computed solution and the solid line represents the exact solution. The
overlay of vertical lines (solid in Fig. 7 or dotted in Figs. 8 - 13) indicate the cell interfaces.
Fig. 7 shows the baseline, pure cell case where we have a mesh of 62 pure cells and computed
the solution up to a final time t = 0.8. The remaining figures are all calculated on a 61 cell mesh
where the middle cell is twice as large as the other cells.

Fig. 8 and 9 show a close-up of the linear reconstruction for the temperature on either side of
the interface for minmod and Barth-Jespersen limiters using the weighted arithmetic mean. Fig.
10 and 11 show the linear reconstruction on either side of the interface for both types of limiters
using the weighted harmonic mean. Finally, Fig. 12 and 13 show the results for both types of
reconstruction using the weighted geometric mean. Note that because the material is actually
homogeneous and the interface is artificial. The three homogenization strategies (4.1.1)-(4.1.3)
yield the same result. Each weighted mean collapses to the conductivity constant k in the mixed
cell. The difference between using the minmod limiter and Barth-Jespersen limiter in these
computational experiments is very subtle, usually somewhere in the third decimal place. So the
results for the two linear reconstruction strategies look identical in the “eyeball” norm.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7

y

x

Non-Linear Heat Wave on Uniform Mesh of 62 Cells

33
3
3
3
3

3

3333333333333

Figure 7: The baseline, pure cell case where the artificial material interface aligns with a cell
interface.

30

19

20

21

22

23

24

25

2.6 2.8 3 3.2 3.4 3.6

y

x

computed
3

3
3

3
3

3

3

3

3

3

3

3

3
exact

interface
mesh

Figure 8: Reconstructed temperature values in mixed cell using weighted arithmetic mean and
minmod limiter.

19

20

21

22

23

24

25

2.6 2.8 3 3.2 3.4 3.6

y

x

computed
3

3
3

3
3

3

3

3

3

3

3

3

3
exact

interface
mesh

Figure 9: Reconstructed temperature values in mixed cell using weighted arithmetic mean and
Barth-Jesperson limiter.

31

19

20

21

22

23

24

25

2.6 2.8 3 3.2 3.4 3.6

y

x

computed
3

3
3

3
3

3

3

3

3

3

3

3

3
exact

interface
mesh

Figure 10: Reconstructed temperature values in mixed cell using weighted harmonic mean and
minmod limiter.

19

20

21

22

23

24

25

2.6 2.8 3 3.2 3.4 3.6

y

x

computed
3

3
3

3
3

3

3

3

3

3

3

3

3
exact

interface
mesh

Figure 11: Reconstructed temperature values in mixed cell using weighted harmonic mean and Barth-
Jesperson limiter.

32

19

20

21

22

23

24

25

2.6 2.8 3 3.2 3.4 3.6

y

x

computed
3

3
3

3
3

3

3

3

3

3

3

3

3
exact

interface
mesh

Figure 12: Reconstructed temperature values in mixed cell using weighted geometric mean and
minmod limiter.

19

20

21

22

23

24

25

2.6 2.8 3 3.2 3.4 3.6

y

x

computed
3

3
3

3
3

3

3

3

3

3

3

3

3
exact

interface
mesh

Figure 13: Reconstructed temperature values in mixed cell using weighted geometric mean and
Barth-Jesperson limiter.

33

5.3 Non-Linear Heat Wave in Multiple Materials

As a numerical experiment we use the MFD scheme for non-linear problems given in (3.9) to
propagate the heat wave (5.2.3) across a material interface. We take the parameters for the wave
to be D = 5, s = 1, α = 5/2. In Fig. 14 we plot the result of propagating the heat wave across
a single material as a benchmark. For the calculation in Fig. 14 we take k = 1/100. We solve

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7

y

x

Heat Wave in a Homogeneous Material; k = 1
100

computed33
3
3
3
3

3

3333333333333

3

Figure 14: Benchmark heat wave propagates through a homogeneous material with k = 1/100.

the non-linear heat equation (3.7) on a mesh of 61 cells where the middle cell is twice as big as
all other cells.

The plot in Fig. 15 presents the result of the numerical experiment where we propagate the
heat wave across a material interface located at x = 3.1. For the experiment we take

k =
{

1
100 if x < 3.1

1
1000 if x > 3.1 . (5.3.1)

The numerical experiment shown in Fig. 15 does not have an analytical solution (that we are
aware of) so it is presented as a qualitative experiment with which we compare the result Fig.
14.

As the heat wave interacts with the material interface, where the diffusion coefficient shrinks
by a factor of 10, the amplitude of the heat wave raises considerably compared to the original
amplitude in Fig. 14. The head of the heat wave continues to slowly propagate in the second
material. The tail of the heat wave is still located in the first material and continues diffusing
at the faster rate allowed by the first material. Essentially the tail is trying to ‘catch-up’ to the
head of the heat wave; however, the tail slows down once it interacts with the material interface.
The continuing interaction of the tail with the material interface causes a continuing rise in the
amplitude.

34

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7

y

x

Heat Wave Propagation Across a Material Interface; kL = 1
100 , kR = 1

1000

computed

333333333333333333333333333333333
3
3
3
3
3

3

3

333333333333333333333333

3
interface

Figure 15: A heat wave propagates across a material interface located at x = 3.1.

6 Conclusions & Future Work

We used the support operators method and derived a numerical algorithm to solve the diffusion
equation in one spatial dimension. It was shown that the resulting mimetic finite difference
scheme satisfied a discrete version of the divergence theorem. The discrete operators mimic
the negative adjoint property of the continuum flux and divergence operators. We showed that
the product of the discrete divergence operator and discrete flux operator is symmetric positive
definite, just as in the continuum. Finally, we ensured that the null space of the discrete flux
matched the null space of the continuum flux operator.

We gave a brief overview of the process to extend the algorithm to solve the non-linear heat
equation. We introduced the concepts of homogenization and condensation to extend the MFD
scheme to handle meshes where material interfaces may not coincide with cell interfaces. Once
the method could handle mixed cells the question arose of how to recover temperature values
in the pure parts of the mixed cell. In answering this question we avoided introducing extra
degrees of freedom in the matrix equations of the MFD scheme. Instead we outlined a limited
linear reconstruction mechanism to recover the unknown temperatures. We discuss extensions of
homogenization, condensation and a limited linear reconstruction to higher spatial dimensions.

The analysis of Secs. 2 - 4 was followed by a battery of numerical results. We verified the
predicted second-order convergence rate of the MFD scheme. Also, we checked to ensure that
the algorithm recovers linear and piecewise linear solution exactly, to numerical double precision,
provided any material discontinuities coincide with cell interfaces.

We investigated the effect mixed cells have on the convergence rate of the method. We
found the homogenization techniques tested drop the method from second-order to first-order.
We analyzed how accurately the limited linear reconstruction mechanism recovered intermediate
temperatures in mixed cells. From the numerical experiments, on linear and non-linear diffusion,
we found the Barth-Jespersen limiter produced more accurate results than the minmod limiter
overall. Additionally, the weighted harmonic mean homogenization left the calculation in the

35

pure cells of the mesh untouched. That is, the method was able to exactly, to numerical double
precision, recover the piecewise linear solution in the pure cells; the error is dominated by the
mixed cell. We compared the limited linear reconstruction mechanism results against previous
results for other methods of recovering intermediate temperature values. We found our method
outperformed the others in every case.

Lastly, we performed a qualitative numerical experiment propagating a heat wave across
a material interface. In the absence of an analytical solution we check the computed solution
against our physical intuition of how the heat wave should behave as it interacts with the material
interface.

For future work, one would implement the local condensation method and compare the nu-
merical results with the homogenization techniques. The implementation of the local method
would involve rewriting several subroutines in our code. A bulk of the changes would occur in
the routines which assemble the coefficient matrix S + D†MD and the right hand side vector
D†MΥ−1Fn+1. We would require a general mechanism to detect the location of a mixed cell
and alter the operators S and D†M accordingly. We present the full derivation of the local
method in Sec. 4.1.2, but we ran out of time this Summer to implement it.

Acknowledgments

The author thanks Dr. Mikhail Shashkov and Matt Jemison for fruitful discussions on the
support operators method, mixed cell techniques, and limiters.

References

[1] T. J. Barth. Numerical methods for gasdynamics systems on unstructured grids. In Lecture
Notes in Computational Scince and Engineering, “An Introduction to Recent Developments
in Thoery and Numerics for Conservation Laws, Proceedings of the International School on
Theory and Numerics for Conservation Laws, pages 195–285, Freiburg/Littenweiler, 1997.
Springer Berlin.

[2] M. Holec. Modeling of Diffusive Problems in Laser Plasma. PhD thesis, Czech Technical
University, 2012.

[3] J. Hyman. Numerical methods for tracking interfaces. Physica D: Nonlinear Phenomena,
12(1 - 3):396 – 407, 1984.

[4] J. Hyman, M. Shashkov, and S. Steinberg. The numerical solution of diffusion prob-
lems in strongly heterogeneous non-isotropic materials. Journal of Computational Physics,
132(1):130 – 148, 1997.

[5] J. Hyman, M. Shashkov, and S. Steinberg. The effect of inner products for discrete vector
fields on the accuracy of mimetic finite difference methods. Computers & Mathematics with
Applications, 42(12):1527 – 1547, 2001.

[6] M. Kucharik. Comparison of multi-material heat conductivity models. Technical report,
Los Alamos National Laboratory, (unpublished), 2012.

[7] Y. Kuznetsov. Mixed finite element method for diffusion equations on polygonal meshes
with mixed cells. Journal of Numerical Mathematics, 14:305–315, 2006.

36

[8] Y. Kuznetsov, K. Lipnikov, and M. Shashkov. The mimetic finite difference method on
polygonal meshes for diffusion-type problems. Computational Geosciences, 8:301–324, 2004.

[9] L. G. Margolin and M. Shashkov. Second-order sign-preserving remapping on general grids.
Technical report, Los Alamos National Laboratory, LAUR-02-525, 2003.

[10] L. G. Margolin and T. F. Tarwater. A diffusion operator for Lagrangian meshes. Technical
report, Lawrence Livermore National Laboratory, LAUR-02-525, 1986.

[11] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, 2007.

[12] M. Shashkov and S. Steinberg. Solving diffusion equations with rough coefficients in rough
grids. Journal of Computational Physics, 129:383–405, 1996.

[13] P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.
SIAM Journal on Numerical Analysis, 21(5):995–1011, 1984.

37

2012 Computational Physics Student Summer Workshop: Final Reports

Advanced Cell-Centered Hydro
Methods

(Nathaniel Morgan, mentor)

Final Report - Los Alamos National Laboratory
Computational Physics Summer Student Workshop

Student: Tyler Lung
PhD Pre-candidate

Department of Aerospace Engineering
University of Michigan
tblung@umich.edu

Graduate Advisor: Professor Phil Roe
Department of Aerospace Engineering

University of Michigan
philroe@umich.edu

Mentor: Dr. Nathaniel Morgan
XCP-8: Verification and Analysis

Los Alamos National Lab
nmorgan@lanl.gov

August 17, 2012

Abstract

The numerical solution of highly compressible, multi-material flows is an ongoing research
area. These types of flows can be solved with a Lagrangian type mesh which moves with the
material in a simulation to allow precise material interface tracking. Currently, researchers
at Los Alamos National Laboratory and elsewhere are investigating cell-centered Lagrangian
algorithms with the aim of producing methods that have second-order accuracy, preserve
symmetry, and do not generate spurious vorticity. The new cell-centered algorithms solve a
Riemann-like problem at the vertex of a cell. Professor Phil Roe at the University of Michigan
has proposed a new struture for Lagrangian hydrodynamic algorithms that does not rely on
the solution of the Riemann problem. The new approach utilizes Flux Corrected Transport
(FCT) and it implements a form of vorticity control. The first step in the development of this
method has been to construct an algorithm that solves the acoustic equations on an Eulerian
mesh. The algorithm, which builds on the work of Morton and Roe [1], calculates fluxes at cell
vertices, attains second-order accuracy using FCT, and has the special property of preserving
vorticity. Results are presented that confirm the second order accuracy of the scheme and
the vorticity preserving properties. The results are compared to the output produced by a
MUSCL-Hancock algorithm. Some discussion of limiting methods for the FCT algorithm is
also given.

1

1 Introduction

The development of improved algorithms for the simulation of compressible multi-material flows
is of high importance to Los Alamos National Laboratory. The algorithms form the basis for
production computer codes which are heavily relied upon to successfully carry out the lab’s mission.
The long term goal of the research presented here is to develop a new Lagrangian compressible flow
algorithm that has three distinguishing characteristics:

1. Uses Flux Corrected Transport (FCT) to achieve second order accuracy while incorporating
multi-dimensional physics.

2. Does not rely on the solution of the traditional one dimensional Riemann problem.

3. Implements a form of vorticity control.

This is an ambitous goal, and in the opinion of the author and his graduate advisor, it would
be foolish to jump straight to an effort to implement a multi-dimensional Lagrangian algorithm. A
better procedure is to start with simple implementations of the ideas stated above and make jumps
in complexity as ideas and methods are proven and understood. The first step in this process
was implementing one dimensional linear advection solvers of FCT and MUSCL-Hancock types on
Eulerian meshes and comparing their performance. The results obtained showed that the FCT
algorithm matched or exceeded the performance of the MUSCL-Hancock algorithm in all areas.
Next, one dimensional solvers for the acoustic equations were implemented in both the FCT and
MUSCL-Hancock flavors, again on Eulerian meshes. The results here were sufficiently encouraging
to warrant the extension of the algorithms to two dimensions. This work was begun about one
month prior to the start of the 2012 Computational Physics Summer Workshop at LANL and
continued for its duration. As such, the 2D vorticity preserving FCT algorithm for the acoustic
equations is the focus of this report.

It is worth discussing the impetus for developing an Eulerian solver for the acoustic equations.
After all, it has already been stated that the ultimate goal of this research is to produce a Lan-
grangian algorithm. Such an algorithm must incorporate mesh movement and non-linear physics,
two things which are not present in the acoustic solver. The key here is to realize that the acoustic
equations are a system of partial differential equations that exhibit symmetric wavespeeds. This is
a characteristic they share with the Lagrangian equations of gas dynamics. The plan is to exploit
this trait when developing a flux limitng prodecure for the the Lagrangian algorithm. The acoustic
equations provide a simplified development environment for such a limiting procedure.

2 Vorticity Preserving Flux Corrected Transport Algorithm

The numerical method presented in the following section builds on the work of Morton and Roe
[2], which was published in 2001. In that paper, the authors present a Rotated Richtmeyer scheme
which is formulated using corner fluxes. The Rotated Richtmeyer scheme is a two dimensional
variant of the Lax-Wendroff method. By computing and storing fluxes at cell vertices, Morton and
Roe were able to produce a scheme that, by construction, guarantees that the discrete vorticity

ζ = δxµyv − δyµxu (1)

is preserved.1 This fits the physics of the acoustic equations perfectly provided that the background
state of the fluid of interest has a uniform density. Note that if the method were extended to

1See Appendix A for a definition of the compact differencing operators used in equations througout this document.

2

solve a system of governing equations that allow vorticity to evolve in time, a vorticity correction
mechanism would need to be developed. There are benefits beyond the vorticity preserving property
when working in terms of nodal fluxes. This eliminates the need to solve traditional one dimensional
Riemann problems at cell interfaces as is customary in Godunov based finite volume methods. There
are two main reasons why we seek to distance ourselves from using a Riemann solver to compute
fluxes. First, strictly speaking, the Riemann problem is one dimensional in nature. In this research,
emphasis is placed on making the new algorithm as multi-dimensional as possible. Second, when
considering Lagragian applications, the use of Riemann solutions at cell interfaces forces one to
relate face velocties around a node to a unique nodal velocity. This can be a difficult task and it is
one that we wish to avoid. By storing fluxes at vertices, the unique velocity of each node is already
defined.

The ideas of Flux Corrected Transport, orginally developed by Boris and Book [2] were chosen
to achieve second order accuracy. This was due to the multi-dimensional and adaptive limting
framework that it provides. An FCT algorithm computes a first order solution which is known to
free of spurious oscillations and then uses that information to relax limiting constraints where it is
appropriate. This stands in contrast to other limiting schemes which apply limiting whenever a new
maximum or minimum could develop with out giving a thought to whether the extremum should
exist or not. The first order scheme used here is equivalent to the First Order Upwind Method, but
it does not require explicit upwinding. The high order scheme used to define antidiffusive fluxes is
the Rotated Richtmeyer scheme, mentioned previously.

2.1 Problem Statement

In two dimensions the acoustic equations read

pt + ρ0a
2
0(ux + vy) = 0 (2)

ut +
1

ρ0
px = 0 (3)

vt +
1

ρ0
py = 0 (4)

Note that u, v, and p represent perturbations to a fluid with a uniform background state described
by u0 = 0, v0 = 0 and p0 = constant. Zero subscripts always denote a property of the background
state. For example, ρ0 and a0 give the density and sound speed of the background state, respectively.

Assume a structured quadrilateral mesh with ∆x = ∆y = h. Define the timestep as k. The
conserved variables u = (p, u, v)T are stored at cell centers and the fluxes f = (ρ0a

2
0u, 0, ρ

−1
0 p)T and

g = (0, ρ0a
2
0v, ρ

−1
0 p)T are stored at vertices.

2.2 Numerical Recipe

A step by step numerical recipe for the Vorticity Preserving Flux Corrected Transport Algorithm
(VPFCT) will now be given.

2.2.1 Compute Low Order Solution

1. Calculate the fluxes at each vertex from adjacent cell centered values.

f̂ = µxµyf (5)

ĝ = µxµyg (6)

3

2. Evolve each vertex flux through a partial time step.

F̂ = f̂ − νh

2k

 δxµyu+ δyµxv
0

δxµyp

 (7)

Ĝ = ĝ − νh

2k

 0
δxµyu+ δyµxv

δyµxp

 (8)

ν ≡ a0k

h
(9)

3. Loop over cells to update.

u∗ = un − k

h
(δxµyF̂ + δyµxĜ) (10)

2.2.2 Compute High Order Solution

1. Define antidiffusive fluxes such that F̂AD
∗

= F̂H
∗
− F̂L

∗
and ĜAD

∗
= ĜH

∗
− ĜL

∗
.

F̂AD
∗

=
a0(ν

2 − ν)

2ν

 δxµyu
∗ + δyµxv

∗

0
δxµyp

∗

 (11)

ĜAD
∗

=
a0(ν

2 − ν)

2ν

 0
δxµyu

∗ + δyµxv
∗

δyµxp
∗

 (12)

2. Compute limiting coefficients, ω, for the antidiffusive fluxes.

See Section 3 for more details.

3. Update the solution to the n+ 1 time level.

un+1 = u∗ − k

h
(δxµyωf F̂AD

∗
+ δyµxωgĜAD

∗
) (13)

3 Flux Limiting

3.1 Procedure for One Dimension

The simplest flux limiting case, that which occurs in one dimension, will be considered first.
The goal is to implement a method that will ensure that monotone data will remain monotone
while advancing in time. In one dimension, the definition of montonicity is simple and well defined.
When computing the limiting coefficients for a given cell, the first order solution will be used to
determine if the cell value falls on the interval defined by its left and right neighbors. If it does, the
data is monontone and we wish to keep it that way. Mathematically, this can be expressed with
the inequality

0 ≤
un+1
j − u∗j−1

u∗j+1 − u∗j−1

≤ 1 (14)

By defining the quantities δu∗L = u∗j − u∗j−1 and δu∗R = u∗j+1 − u∗j and substituting them, along
with the update equation, into the previous inequality we obtain

4

0 ≤ 2

Q+
+ ωL − ωR

δu∗L
δu∗R
≤ 2

Q+
(1 +

δu∗R
δu∗L

) (15)

Where

Q+ = Q− ν2 Q = ν ν ≡ a0k
h

(16)

Note that the limiting coefficients ωL and ωR have been applied to the fluxes in the update
equation prior to substitution. The coefficients must fall between zero and one. A value of zero
reduces the solution to first order, while a value of one gives the full second order method. The
goal is to find the largest allowable coefficients that will still prevent non-physical oscillations from
developing in the solution.

Noting that all the quantities in the inequalities are positive, one can use ”worst case scenarios”
to arrive at expressions for the limiting coefficients. The left inequality is

0 ≤ 2

Q+
+ ωL − ωR

δu∗L
δu∗R

(17)

The positive term ωL can only help this inequality, so the worst case of ωL = 0 is assumed to
give

ωR ≤
2

Q+

δ∗L
δ∗R

(18)

Similar logic is used on the right inequality to give

ωL ≤
2

Q+
(1 +

δu∗R
δu∗L

) (19)

3.1.1 Procedure for Two Dimensions

The challenge now, which is of critical importance, is to develop a limiting method which can be
applied to two dimensional, and eventually three dimensional, problems. The method and reasoning
presented in the previous section becomes much more difficult in two dimensions since each flux
depends on four neighboring cells. This adds a great deal of complexity to the inequalities and
makes it difficult or impossible to find explicit expressions for the limiting coefficients. To begin
analyzing the two dimensional case we will first consider the second order pressure correction

pn+1 = p∗ − k

h
(δxµyωf F̂AD∗ + δyµxωgĜAD∗) (20)

Where the fluxes are given by

F̂AD∗ =
a0(ν

2 − ν)

2ν
(δxµyp

∗) (21)

F̂AD∗ =
a0(ν

2 − ν)

2ν
(δyµxp

∗) (22)

Performing a fair amount of algebra, the second order pressure update simplifies to

pn+1 = p∗ − (ν2 − ν)

4
[ω1(p1 − p5) + ω2(p3 − p5) + ω3(p9 − p5) + ω4(p7 − p5)] (23)

This is a notable result and shows that the fluxes for the second order pressure update depend
only on the diagonal neighbors of the cell of interest. Furthermore, this implies that there are

5

actually two distinct pressure fluxes per node. Since these two fluxes depend only on the diagonal
neighbors, they can be limited independently while still preserving the vorticity preserving properties
of the scheme. Using this interpretation of the fluxes, it can be observed that we nearly have a one
dimensional limiting problem along each cell diagonal. In fact, if the cell centered pressure could
be intelligently split between the two sets of diagonal “flux pairs”, two one dimensional limiting
problems would result. Since we know how to solve one dimensional limiting problems, it is this
procedure we seed to implement. Note that this technique could be easily generalized to three
dimensions.

In order to distribute the cell centered pressure between the two one dimensinoal limiting prob-
lems, define two weights wa and wb. The simplement way to approach this would be to assign
values of 0.5 to each weight, which would evenly split the cell centered value between the limiting
problems. However, it seems that this would be overly simplistic and that it would be better to
assign more of the cell centered value to the flux pair that has the largest net flux value. The logic
here is that the flux pair with the largest net value will have the greatest effect during the final cell
update and therefore should be be assigned a larger portion of the cell centered value for limiting
purposes. Now define

fnet
a ≡ abs(f1 + f3) fnet

b ≡ abs(f2 + f4) (24)

From here the distribution weights can be defined as

wa = fnet
a

fnet
a +fnet

b
wb =

fnet
b

fnet
a +fnet

b
(25)

and the pressures assigned to each limiting problem are given by

pa = wap5 pb = wbp5 (26)

To summarize, the two dimensional pressure limiting problem has now been reduced to two one
dimensional limiting problems which are solved along cell diagonals. This technique results in two
limiting coefficients being computed per node, one for each diagonal flux. Implementation could be
such that the two fluxes at each node are limited independently or the most conservative coefficient
could be applied to both fluxes. Next it is necessary to turn our attention to the velocities. The
natural question to ask here is if the velocity components can be limited in the same manner as the
pressure. To investigate this question, we turn to the continuous form of the equations and analyze
the second order terms.

The acoustic system is repeated here for convience in vector form

∂u

∂t
+

1

ρ0
∇(p) = 0 (27)

∂p

∂t
+ ρ0a

2
0∇ • u = 0 (28)

Differentiating (1) with respect to time we have

∂2u

∂t2
+

1

ρ0

∂

∂t
∇(p) = 0 (29)

Take the gradient of (2) to obtain

∇(
∂p

∂t
) + ρ0a

2
0∇(∇ • u) = 0 (30)

6

Noting that partial differentiation is commutative we have

∂

∂t
∇(p) = −ρ0a20∇(∇ • u) (31)

Subsitute (5) into (3) to show

∂2u

∂t2
= a20∇(∇ • u) (32)

Recall the vector identity

∇(∇ • φ) = ∇ • (∇φ) +∇× (∇× φ) (33)

Applying (7) to the RHS of (6) we have

∂2u

∂t2
= a20∇ • (∇u) +∇× (∇× u) (34)

Noting that ∇× u = ω and ∇ • (∇) ≡ ∇2 we write

∂2u

∂t2
= a20∇2u +∇× ω (35)

Some vector manipulation will show that ∇× ω is given in 2D by

∂

∂y
(
∂v

∂x
− ∂u

∂y
)̂i− ∂

∂x
(
∂v

∂x
− ∂u

∂y
)̂j (36)

The x and y components of the second order velocity equation are therefore

utt = a20(uxx + uyy + vyx − uyy) (37)

vtt = a20(vxx + vyy − vxx + uxy) (38)

which can also be written as

∂2u

∂t2
= a20(∇2(u) +

∂

∂y
ωi) (39)

∂2v

∂t2
= a20(∇2(v)− ∂

∂x
ωj) (40)

Note at this point that the second order velocity corrections are composed of two terms. The
first is Laplacian and the second term contains a component of the vorticity curl. The algebra will
be ommitted for brevity, but if one follows an analagous procedure for the pressure, you will find
that

ptt = a20(pxx + pyy) (41)

It is now understood that the tidy form of the equation for the second order pressure update used
in constructing the limiting scheme was due to the the Laplacian form of the continous equation.
While the velocities have a Laplacian term also, there is an additional vorticity term that must also
be accounted for. Perhaps it should be pointed out that this term is, obviously, only important
for vortical flows. In the absence of vorticity the velocity terms could be limited in a way that is
completely analagous to the pressure. In fact, the current implementation of the code does just

7

this, and vorticity is neglected when limiting the velocity. Improving this procedure is one focus of
ongoing work.

There is one last issue related to velocity limiting that deserves some attention. The velocity
limiting must be done in such a way that does not destroy the vorticity preserving property of the
scheme. A natural question that arises here is whether or not different limiting coefficients can
be applied to the velocity components at a given node while still keeping this important property
intact.

Recall the compact vorticity, which we seek to preserve

ζ = δxµyv − δyµxu (42)

Vorticity preservation implies that the following condition should be enforced for any two suc-
cessive time levels

ζn+1 = ζn =⇒ δxµyv
n+1 − δyµxu

n+1 = δxµyv
n − δyµxu

n (43)

This is accomplished, per the work of Morton and Roe [1], by evaluating the divergence of
pressure via vertex fluxes. To understand how to keep this property while limiting the velocity
components, first take a look at the first order scheme. Recall that the update equations for the
first order scheme look like

u∗ = un − k

h
[δxµy(µxµyρa

2u− Qh

2k
(δxµyu

n + δyµxv
n))] (44)

v∗ = vn − k

h
[δyµx(µxµyρa

2v − Qh

2k
(δxµyu

n + δyµxv
n))] (45)

Substitute (44) and (45) into (43) and cancel terms

δxµy[v
n − k

h
[δyµx(µxµyρa

2v − Qh

2k
(δxµyu

n + δyµxv
n))]]

−δyµx[un − k

h
[δxµy(µxµyρa

2u− Qh

2k
(δxµyu

n + δyµxv
n))]]

= δxµyv
n − δyµxu

n

(46)

δxµy[−
k

h
[δyµx(µxµyρa

2v − Qh

2k
(δxµyu

n + δyµxv
n))]]

−δyµx[−k
h

[δxµy(µxµyρa
2u− Qh

2k
(δxµyu

n + δyµxv
n))]]

= 0

(47)

−δxµy
k

h
[δyµxµxµyρa

2v] + δyµx
k

h
[δxµyµxµyρa

2u] = 0 (48)

If vorticity is to be preserved, the LHS of (48) must evaluate to zero. Experiments with the
existing code have shown that this is indeed the case. Now consider the second order FCT scheme.
The update equations here are

un+1 = u∗ − k

h
[δxµyωu

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)] (49)

8

vn+1 = v∗ − k

h
[δyµxωv

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)] (50)

Substitute (49) and (50) into (43)

δxµy[v
∗ − k

h
[δyµxωv

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]]

−δyµx[u∗ − k

h
[δxµyωu

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]]

= δxµyv
n − δyµxu

n

(51)

Substitute (44) and (45) into (51) and then cancel terms

δxµy[v
n − k

h
[δyµx(µxµyρa

2v − Qh

2k
(δxµyu

n + δyµxv
n))]]

−k
h

[δyµxωv
aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]]

−δyµx[un − k

h
[δxµy(µxµyρa

2u− Qh

2k
(δxµyu

n + δyµxv
n))]]

−k
h

[δxµyωu
aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]]

= δxµyv
n − δyµxu

n

(52)

δxµy[−
k

h
[δyµx(µxµyρa

2v)]− k

h
[δyµxωv

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]]

−δyµx[−k
h

[δxµy(µxµyρa
2u)]− k

h
[δxµyωu

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]]

= 0

(53)

From (48) we can infer that terms 1 and 3 of (53) combine to give zero, leaving

−δxµy
k

h
[δyµxωv

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]

+δyµx
k

h
[δxµyωu

aQ+

2ν
(δxµyu

∗ + δyµxv
∗)]

= 0

(54)

Factoring like terms and operators gives

δxµyδyµx
Q+

2
[ωv(δxµyu

∗ + δyµxv
∗)− ωu(δxµyu

∗ + δyµxv
∗)] = 0 (55)

Inspection of (55) implies that the limiting coefficients must be equal for the equality to be true.
This analysis suggests that vorticity will be generated if dissimilar limiting coefficients are applied
to the velocity components. This conclusion agrees with experiments run to date with the research
code.

9

4 Numerical Results

Results obtained from the most recent implementation of the code are now presented. First, con-
vergence analysis will be discussed to gain confidence that the Vorticity Preserving FCT (VPFCT)
and MUSCL-H algorithms are working properly. Then results will be presented that compare the
performance of the VPFCT and MUSCL-H scheme for the following classes of problems: smooth
intial data, discontinuous intial data, and vortical flows.

4.1 Convergence Analysis

Some convergence analysis was done using Richardson’s deffered approach to the limit. This
notes that the following equation can be used to relate an exact solution, its numerical approxima-
tion, and the design convergence rate of the numerical method. For both VPFCT and MUSCL-H
we have

φexact = φapprox. +O(h2) (56)

Recognizing that the exact solution is a constant we can rearrange this expression to get

φapprox = c1h
2 + c2 (57)

When plotting some code output as a function of the mesh parameter, h, a linear relationship
should exist. This procedure was performed by taking the code output of interest to be the average
velocity magnitude squared over the entire domain. Velocity magnitude squared was chosen so
that a zero average would not be obtained on problems with cylindrical symmetry. The velocity
magnitude was left squared to avoid a square root sign that complicates the analysis. It should be
noted since the velocity magnitude was squared, there is a fourth order deviation from the perfect
linear relationship shown above. This was assumed to be negligable. The test problem had smooth
intial data: a Gaussian pressure disturbance to a fluid at rest.

A number of interesting conclusions can be reached from studying the convergence results pre-
sented in Figure 1. On an encouraging note, this figure shows that the unlimited versions of both
VPFCT and MUSCL-H are converging at second order and to the same value. In addition, the
constant in the leading error term of the VPFCT scheme is smaller than that of the MUSCL-H, as
evidenced by the fact that the VPFCT line falls above that for MUSCL-H on the plot. The results
for the limited VPFCT scheme were dissapointing as the convergence failed on finer meshes. Under-
standing this failure and fixing it is an area of ongoing work. The VPFCT limiter which produced
these results used the distribution weights defined using net flux values. In addition, it used the
most conservative pressure limiting coefficient at each node. Experimentation has shown that this
approach is preferred over using two limiting coefficients at each node. The implementation using
distinct limiting coefficients has shown to increase the leading error constant during experimenta-
tion. Ironically, the convergence behavior of the VPFCT scheme can be improved by setting the
distribution weights to 0.5. At the current time, it appears that using the more complicated weights
introduces a large amount of noise into the velocity divergence and throws off the convergence of
the scheme. Convergence results when the VPFCT limiting scheme uses 0.5 for the distribution
weights are shown in Figure 2.

4.2 Smooth Initial Data

Tests were run using a problem with smooth initial data in which a Gaussian Pressure pertur-
bation was introduced to a fluid at rest. The pressure field was intialialized according to

10

0 0 0 0.01 0.01 0.01 0.01
0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

FCT-Lim

MUSCL-H-NoLim

Linear (MUSCL-H-NoLim)

FCT-NoLim

Linear (FCT-NoLim)

MUSCL-H-Lim

Linear (MUSCL-H-Lim)

h^2

A
ve

ra
g

e
 V

e
lo

ci
ty

 M
a

g
n

itu
d

e
 S

q
u

a
re

d

Figure 1: Convergence Study - Convergence Problem with Limited VPFCT

p(x, y, 0) = 2exp(x2 + y2) (58)

Results were plotted as function of radius to help visualize the symmetry preservation ability
of the algorithms. Figure 3 shows the pressure and velocity magnitude profiles for the the VPFCT
and MUSCL-H schemes. Note that the VPFCT scheme has a slightly higher peak pressure and
velocity. Perhaps of more interest was verifying the vorticity preserving properties of the VPFCT
scheme. Figure 4 compares the compact vorticity contours produced by each scheme after three
time units. The VPFCT maintains zero vorticity to double precision, while the MUSCL-H scheme
creates vorticity in an interesting pattern.

4.3 Discontinuous Initial Data

A problem with discontinous intial data was run in order to better exercise the limiting mech-
anisms of each scheme. Here a cylindrical pressure perturbation was introduced to a fluid at rest.
The pressure field was intialized according to

p(x, y, 0) = 2 r ≤ 2 p(x, y, 0) = 0 r ≥ 2 (59)

11

0 0 0 0 0 0.01 0.01
0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

FCT-NoLim StdFluxForm

FCT-Lim

MUSCL-H-NoLim

MUSCL-H-Lim

h^2

A
ve

ra
g

e
 V

e
lo

ci
ty

 M
a

g
n

itu
d

e
 S

q
u

a
re

d

Figure 2: Convergence Study - VPFCT Distribution Weights set to 0.5

Inspection of the pressure and velocity profiles in Figure 5 shows that while the VPFCT result
is reasonable, more work is still needed on the limiting procedure. Some overshoots still develop,
especially at the top of the shock front, in both the pressure and velocity magnitude plots. The
vorticity plot shown in Figure 6 are even more encouraging than for the smooth problem. The vor-
ticity preserving property of the VPFCT is again verified, while the MUSCL-H scheme manufactures
significant vorticity.

4.4 Vortical Flows

To this point, all the results that have been introduced were for problems with zero vorticity.
For completeness, a test problem with finite vorticity is also included. Here the Taylor-Green vortex
solution is modified for inviscid flow. The pressure and velocity fields were intialized according to

p(x, y, 0) =
2ρ0
4

[cos(2x) + cos(2y)] (60)

u(x, y, 0) = 2sin(x)cos(y) (61)

v(x, y, 0) = −2cos(x)sin(y) (62)

12

Figure 3: Pressure and Velocity Magnitude Profiles for Gaussian Pressure Disturbance, t = 3 units

Figure 4: Compact Vorticity Contours for Gaussian Pressure Disturbance, t = 3 units

The vorticity contours at t = 0 are shown in Figure 7. The vorticity contours after 3 time
units (or around 2000 timesteps) for the VPFCT and MUSCL-H schemes are shown in Figure
8. Note that the VPFCT scheme is able to maintain the vortices, while the MUSCL-H scheme
distorts them. It is worth pointing out that the Taylor-Green solution assumes incompressible flow.
Since the discrete operators in this scheme do not exactly evaluate the velocity divergence to zero
and these algorithms are for compressble flow, small pressure waves propagate through the domain
during the simulation. Even with the wave interactions, the VPFCT scheme is able to preserve
vorticity.

5 Conclusions and Future Work

Significant progress has been made on the short term research goals discussed in the introduction.
A two dimensional VPFCT algorithm has been implemented and compared to the performance of
a MUSCL-H algorithm. The vorticity preserving properties of the VPFCT algorithm have been
verified and its performance has shown promise relative to the MUSCL-H algorithm. Specifically,

13

Figure 5: Pressure and Velocity Magnitude Profiles for Cylindrical Pressure Disturbance, t = 3
units

Figure 6: Compact Vorticity Contours for Cylindrical Pressure Disturbance, t = 3 units

the unlimited version of VPFCT was shown to have a smaller leading error constant than the
MUSCL-H scheme. There is still work to be done on the VPFCT limiting mechanism. The limiting
scheme needs to be improved so that it does not adversley affect convergence. In addition, some
overshoots are still appearing in the limited VPFCT solution so more agressive limiting is needed
in some instances. Once these issues are resolved in a satisfactory manner, work will begin on
extending the method to the Lagrangian Euler equations.

14

Figure 7: Initial Compact Vorticity Contours: Taylor-Green Vortex

Figure 8: Compact Vorticity Contours for Taylor-Green Vortex, t = 3 units

15

References
[1] Morton, K. W. and Roe, P.L.. Vorticity-preserving Lax-Wendroff-type scheme for the system

wave equation. SIAM J. Sci. Comp., 2001, Vol. 23, No. 1, pp.170-191.
[2] Book, D.L., Boris, J.P.. Flux corrected transport: I. SHASTA, a fluid transport algorithm

that works. J. Comp. Phys., 1973, Vol. 11, pp. 38-69.

16

Appendix A

Definition of compact differencing operators:

δx(.)j,k ≡ (.)j+1/2,k − (.)j−1/2,k (63)

δy(.)j,k ≡ (.)j,k+1/2 − (.)j,k−1/2 (64)

µx(.)j,k ≡
1

2
[(.)j+1/2,k + (.)j−1/2,k] (65)

µy(.)j,k ≡
1

2
[(.)j,k+1/2 + (.)j,k−1/2] (66)

17

Validation of Two Hydrocodes with a Bi-Metallic Shaped Charge

Experiment

Daniel Ingraham

August 16th, 2012

Abstract

Staggered grid (SGH) and cell-centered (CCH) Lagrangian Hydrodynamics are two approaches to
modeling high explosives experiments. These experiments often involve complex flows with multiple
materials with and without constitutive relationships. One example of complex flow phenomena is
the discontinuous velocities along the tangential direction of a contact surface. Lagrangian methods
combined with a contact surface algorithm are well-suited for these types of flows. In this work, the
SGH and CCH schemes coupled with a contact surface algorithm are used to model a bi-metallic shaped
charge experiment. The shaped charge experiment will be used to validate the contact surface methods,
and is scheduled to be performed in the coming year at LANL. The experiment consists of a high
explosive wrapped around a hemispherical shell of aluminum and an inner hemispherical shell of copper.
The interface between the aluminum and copper shells is modeled both as a frictionless and “bonded”
surface. The simulations are performed in a two-dimensional r-z coordinate system using the production
code FLAG. A modified Gurney solution for an imploding sphere and Richardson extrapolation is used
to evaluate the reasonableness of the results.

1 Introduction

1.1 What is a hydrocode?

Hydrodynamic codes (hydrocodes) are used to simulate complex phenomena involving multiple materials
with complex equations of state and constitutive relationships experiencing large-scale deformation. The term
“hydrocode” comes from the behavior of a material when it is subjected to a load many times greater than its
strength — the material will flow much like a fluid, where the material’s stress can be approximated by the
“hydrodynamic” (pressure) component only. Most modern hydrocodes allow for constitutive relationships
that model a material’s strength, however. See refs. [1, 14] for some good introductions to hydrocodes.

Hydrocodes could be divided into two categories: Eulerian codes and Lagrangian codes. Eulerian codes
solve the governing equations in a static frame of reference (or, in the case of moving grids, one that is defined
ahead of time), with the material moving through the computational cells. Lagrangian codes, on the other
hand, adopt a reference frame the moves with the deforming material. In an Eulerian code, the location of the
mesh nodes and cells is constant, and thus the volume of each cell is constant. For a Lagrangian algorithm,
however, it is the mass of each computational cell is constant, and the mesh node and cell locations are one
of the quantities calculated by the algorithm. The mathematical difference between the two perspectives is
essentially found in the form of the governing equations each code type solves: the Eulerian codes contain
an advection term, while the Lagrangian codes do not. For example, the momentum equation in Eulerian
form could be written as

ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

= ρfi +
∂σji
∂xj

, (1)

and the same equation in Lagrangian form as

ρ
dvi
dt

= ρfi +
∂σji
∂xj

. (2)

1

The term ρvj
∂vi

∂xj
in (1) represents the net rate of momentum transfer per unit volume due to advection.

As with everything in life, both Eulerian and Lagranigan codes come with their own advantages and
disadvantages. Most hydrodynamic calculations involve more than one material — thus at least one material
interface is present. Because the mesh in a Lagrangian calculation moves with the material, the interface is
sharply defined and handled in a natural way. In an Eulerian calculation the interface will become “blurred”
as material of one type moves into cells originally containing only material of the “other” type.

One common difficulty with Lagrangian hydrocodes is “mesh tangling.” As a Lagrangian mesh deforms, it
may happen that the lines connecting the nodes may cross, which will prevent the calculation from continuing
(see Figure 1). Eulerian codes do not have this problem, as the mesh remains stationary, or at least moves in
a well-defined way that does not allow it to tangle. A related problem is one where the cells are compressed
so greatly that the largest stable timestep allowed by the time-marching scheme falls below a “reasonable”
limit (likely specified by the code user), again halting the simulation. (Hydrocodes generally use explicit
time-marching algorithms, which generally have relatively restrictive stability limits.)

Δt Δt

Figure 1: Example of a mesh becoming tangled during a Lagrangian calculation. The “∆t arrows” represent
timesteps.

In this work, the LANL production hydrocode FLAG will be used. FLAG is actually an Arbitrary
Lagrangian-Eulerian (ALE) code, meaning it can solve the flow equations in either (or both) reference
frames. In this work, however, the Lagrangian solver of FLAG was used exclusively.

1.2 What is Solution Validation?

Solution validation is cleverly described by Bohem [3] and Blottner [2] (reported by Roache [11]) as ensuring
one is “solving the right equations.” The goal is to show that the equations a simulation code is solving is
an adequate representation of reality (i.e. experiment). Performing validation studies assumes that the code
is “solving the equations right” — Bohem and Blottner’s definition of verification. Stated a slightly different
way, one might say that the goal of validation is to estimate an quantity δ, where

δ = unature − ugov eqns. (3)

Here, unature is the value of a quantity of interest of some system that actually exists in nature (the “real
world”), uninfluenced by any error, and ugov eqns is the value of the same quantity of interest that would be
found if the governing equations constructed to model the system were solved exactly. Equation 3 is inspired
by Oberkampf and Trucano’s discussion of validation [8]. δ can be broken up further:

δ = (unature − uexperiment) + (uexperiment − ugov eqns) (4)

where uexperiment is the value of the quantity of interest measured during an experiment. But (4) can be
subdivided still further:

δ = unature − uexperiment︸ ︷︷ ︸
E1

+uexperiment − ucode︸ ︷︷ ︸
E2

+ucode − ugov eqns︸ ︷︷ ︸
E3

(5)

where ucode is the value of the quantity of interest found using the simulation code. Each of the underbraced
terms is a component of error with a different interpretation. E1 is the error in measurement of the quantity
of interest during the experiment (the “experimental error”), E2 is the difference between u found from
experiment and the simulation code, and E3 is the error created by discretizing the governing equations and

2

solving them on a finite-precision computer (the “numerical error”). E1 can be estimated with knowledge
of the precision of the devices used to perform the experiment and measure the desired data, E2 can be
calculated directly from the experimental and simulation data, and E3 can be found using Solution Verifi-
cation techniques (e.g., Richardson Extrapolation or Roache’s Grid Convergence Index). After these errors
are quantified, an estimate of the errors arising from using the governing equation to model nature (i.e., δ)
can be found with (5).

In reference to (5), the goal of this work is to find ucode and provide an estimate for E3 = ucode−ugov eqns

(in a general sense regarding u). It is hoped that the researchers performing the experiment will provide
uexperiment and E1 = unature − uexperiment, and anyone with access to both the experimental and simulation
data can find E2 = uexperiment − ucode, and thus δ.

2 Numerical Methods

In this work, the LANL simulation code FLAG will be used for all simulations. FLAG is an arbitrary
Lagranian-Eulerian (ALE) code, but only the Lagrangian solver was used in this work. Two different
algorithms for solving the governing equations are implemented in FLAG and used in this work: the well-
established compatible staggered grid hydrodynamics (SGH) scheme [5], and the new cell-centered hydrody-
namics (CCH) scheme [4].

The SGH scheme, as the name implies, stores flow quantities on a staggered grid: position and velocity
are located at the nodes, while density, stress, and internal energy are located at the cell centers. Because of
this arrangement, the SGH method uses two control volumes in its spatial discretization of the flow equations:
one for evaluating the momentum equation, and the other for evaluating an equation for the internal energy.
The “semi-discrete” equations (i.e., discretized in space but not time) are shown in (6), and a diagram of the
control volumes of the SGH scheme is show on the left side of Figure 2. Any suitable time marching scheme
can be used to integrate the pseudo-ODEs in (6) — popular choices are the leapfrog or explicit second-order
Runge-Kutta methods.

dMc

dt
= 0

d~xp
dt

= ~up

Mp
d~up
dt

=
∑
i∈p

σc(i) · d~Si =
∑
i∈p

~Fi

Mc
dεc
dt

= −
∑
i∈c

~Fi · ~up(i) (6)

The CCH scheme, unlike SGH, stores the velocity of the material at the cell centers, along with density,
stress, and total (not internal) energy. Thus the CCH scheme requires only one control volume to evaluate
the “right-hand sides” of the semi-discrete equations found in (7).

dMc

dt
= 0

d~xp
dt

= ~u∗p

Mc
d~uc
dt

=
∑
i∈c

σ∗p(i) · d~Si

Mc
djc
dt

=
∑
i∈c

σ∗p(i) · d~Si · ~u∗p(i) (7)

To sum the forces and work done on each cell’s control surface, the CCH scheme uses a two-step process.
First, the cell-centered velocity and stress values are projected to the nodes using a limited gradient. Next,

3

ρ, u, σ, j

cell center (c)
node (p)

c cp

c cp

c
c

x, u*, σ*

Riemann values

ρ, σ, ε

x, u

mometum CV
energy CV momentum & energy CV

ρ density
u velocity
σ stress
ε internal energy
j total energy

SGH CCH

Figure 2: Control volumes and variable locations for the SGH (left) and CCH (right) schemes.

the projected values are used in a multi-dimensional Riemann-like solver to find the values of stress and
velocity that will be summed around the cell control surfaces to find the temporal rate of change of velocity
and total energy, i.e., the left-hand side of (7).

One difference between the SGH and CCH schemes is that SGH is non-monotonic — sharp flow discon-
tinuities can lead to non-physical oscillations. This is not true of the CCH scheme. The practical effect of
this difference will be seen in the results show later in this work.

Both the SGH and CCH schemes have contact surface algorithms that can be used to model the interface
between two materials. Contact surface algorithms allow two materials to move relative to each other and
separate if the materials are in tension. While the surfaces are in contact the components of stress and
velocity normal to the interface are continuous, while those components parallel may be discontinuous.
Figure 3 shows a conceptual diagram of a contact surface.

contact surface

u1

u2

Figure 3: Diagram of a contact surface.

3 Shaped Charges

A shaped charge is a device used to penetrate a target using the energy stored in a high explosive (HE). Many
different configurations of shaped charges exist, but they all share two common features: a mass of explosive
material with a lined cavity at one end and a detonator at the opposite end. When the high explosive is
detonated, the liner collapses, forming a dense, high-velocity “slug” of material that impacts and (hopefully)

4

burrows deeply into the target. Figure 4 shows the nomenclature of a shaped charge. Refs. [13, 12] contain
excellent introductions to shaped charges.

℄

HE

Casing

Lin
er

Detonator

Figure 4: A diagram of a (cylindrical) shaped charge.

Shaped charges have numerous applications. They are used to “finish” oil wells, creating a channel that
connects the well to the oil reservoir, and in demolition, especially for collapsing large structural columns.
Perhaps shaped charges’ most well-known application, however, is their use in military munitions, such as
missiles, torpedoes, and High Explosive Anti-Tank (HEAT) rounds.

4 Results and Discussion

4.1 Validation Case Setup

A diagram of the shaped charge geometry used in this work is shown in Figure 5. The geometry is defined
in a r-z axis-symmetric coordinate system — z is an axis of symmetry, and thus the copper and aluminum
liners are actually hemispherical shells. The extended 3mm-thick aluminum plate was added to prevent
mesh tangling in the HE region; this allows the simulation to run longer. The air region below the shaped
charge was added to avoid a “triple point”at the intersection of the bottom edge of the aluminum endplate,
the contact surface line, and the air.

A justification for treating the copper-aluminum interface as a frictionless contact surface is warranted.
If the following assumptions are made:

• Clearance between parts ≈ 1µm

• Approximate viscosity of air ≈ 5.0 · 10−5Pa · s

• After-shock particle velocity ≈ 0.2cm/µs

5

Copper

Aluminum

Air

High
Explosive
(HE)

Frictionless
Contact Surface

10cm

5cm
4cm

3.5cm

2cm

3cm

z

r

3mm

Figure 5: Diagram of the shaped charge geometry used in this work. The yellow star indicates the detonation
point, and the blue curve is the locus of points where the contact surface algorithm is used.

then the shear stress at the copper-aluminum interface may be estimated as

τ ≈ µ∆u

∆y
= 5 · 10−5Pa · s

0.2 10−2m
10−6s

1 · 10−6m
= 105Pa = 1bar. (8)

The shock pressure for the high explosive used here is about 0.25 MBars, which is five orders-of-magnitude
larger than the estimation in (8). Thus the shock will completely overwhelm any frictional forces at the
interface, and the assumption of a frictionless contact surface is reasonable. Runs with a “bonded” surface
(i.e., completely attached) were performed and will be discussed, however.

A structured mesh was created using the mesh generation software Altair version 5.1.0. Figure 6 shows
a screenshot of the mesh. Ninety cells were used in the angular direction, and the radial spacing was set to
1
12cm, giving approximately square cells in the “center” of the mesh (near the aluminum-HE interface). The
mesh spacing in the r-direction was halved in the aluminum endplate and air region; this change was found
to be more resistant to mesh tangling, allowing the simulation to run longer.

No casing was used in the shaped charge mesh. Some runs were performed using an outer aluminum
casing, but it was found that the results differed little from runs without the casing, and actually made the
simulation slightly less resistant to mesh tangling and cell collapse.

4.2 Results

The mesh of Figure 6 was used with the input files to simulate the detonation of the shaped charge. All results
using the SGH scheme were run on LANL’s “Yellow Rail” cluster and with FLAG version 3.2.Beta.2; results
using the CCH scheme were run on the “Turing” cluster and with FLAG version 3.3.Alpha.6. Simulations
were run in parallel, typically with the same number of processes as execution cores available on one cluster

6

Figure 6: Screenshot of the shaped charge mesh created using Altair 5.1.0.

node (i.e., eight for Yellow Rail and sixteen for Turing). All runs typically took significantly less than the
five minutes of walltime requested from the job scheduler.

Figures 7 and 8 show the deformation of the shaped charge assembly for t = 10µs and t = 20µs,
respectively. The results from the two schemes are qualitatively very similar.

Figure 9 shows a series of pressure maps for the SGH and CCH results. Detonation begins at the “top”
(maximum z location) of the high explosive, causing a shock to propagate downward (Figure 9a). The high
explosive region expands as it interacts with the free boundary condition. The shock wave impacts and
transmits through the aluminum and copper liner, then eventually reaches the free boundary condition at
the inner edge of the copper liner where it is reflected as an expansion wave (Figure 9b). The shock finally
encounters the endplate and air, partially transmitting through to the air region and reflecting as another
expansion wave (Figures 9c and 9d).

Some differences between the SGH and CCH schemes can be observed through Figure 9. Less of the
shock appears to transmit through the liner in the CCH results. Perhaps because of this, the contact surface
appears to open up wider with the SGH scheme. Two of the most striking differences between the two
schemes, however, are seen in the copper material region. For the SGH scheme, “wiggles” are found in the
copper liner trailing the shock. There was some question as to whether these oscillations were a numerical
artifact of the SGH scheme, or a physical effect of the copper/aluminum interface opening and closing after
the passing of the shock wave. To investigate this, the mesh with the same geometry but increased mesh
spacing was created and run with the same inputs as the results from Figure 9. “Wiggles” were still observed,
but with a larger wavelength. This result combined with the lack of the “wiggles” in the CCH results strongly
indicates the oscillations are non-physical.

The other noticeable difference between the two schemes was also found in the copper liner, this time in
the CCH results: pressure “spikes” were observed at the inner and outer edge of the copper liner. These are
not seen in the SGH results, and the reader is reminded that the contact surface algorithm is active at the
inner edge of the copper liner. Perhaps the interpolation of the stress and velocity with the limited gradient

7

Figure 7: Comparison of the deformation of material at t = 10µs for the SGH and CCH schemes.

Figure 8: Comparison of the deformation of material at t = 20µs for the SGH and CCH schemes.

8

(a) t = 5µs (b) t = 10µs

(c) t = 15µs (d) t = 20µs

Figure 9: Sequence of pressure maps for the SGH and CCH runs. The units for the pressure scales are
102GPa, and time is shown in µs.

9

in the CCH scheme is responsible for these effects?
To investigate the effect of the contact surface, the same mesh and configuration from the results of

Figures 7-9 was run without a contact surface at the copper/aluminum interface. A comparison demon-
strating the effect of the frictionless contact surface is show for the SGH and CCH schemes in Figures 10
and 11, respectively. Overall the presence of the contact surface has little effect on the simulation results,

(a) t = 10µs (b) t = 20µs

Figure 10: Effect of frictionless contact surface on the SGH runs.

(a) t = 10µs (b) t = 20µs

Figure 11: Effect of frictionless contact surface on the CCH runs.

but some differences can be seen. Slightly more of the shock wave is transmitted through the “solid” cop-
per/aluminum interface without the frictionless contact surface than with it. Perhaps because of this, the
series of weak compression/expansions reflected after the detonation wave impacts the aluminum endplate
and air is stronger for the case without the contact surface. The “wiggles” trailing the shock wave in the
SGH results are about the same wavelength as the previous results, but slightly larger in amplitude (again
likely due to the stronger shock in the liner region). The most significant observation from the comparison
may be that the pressure spike at the copper/aluminum interface in the CCH runs has disappeared with the
removal of the contact surface, strongly suggesting that the contact surface algorithm is responsible for this
phenomenon.

10

4.3 Sanity Check: Modified Gurney Solution

Gurney solutions [6] use a control volume approach with a momentum and energy balance to estimate the
“steady” velocity of a metal slab accelerated by the detonation of a high explosive. Gurney solutions are
typically restricted to infinite or symmetric geometries and “explosive” configurations; however, Hirsch [7]
extended the Gurney approach to implosive cylindrical and spherical cases. The spherical case will be used
here to obtain a solution that can be compared with a slightly modified version of the simulation results
presented in Section 4.2.

Ro

Ri

p p
M

N

C

Vo

Vi

Figure 12: Diagram of Hirsch’s modified Gurney solution for an imploding sphere. The bounding surfaces
of the control volume are represented by solid lines, and the grey and green shaded areas denote the outer
casing and inner liner. M , N , and C are the masses of the inner liner, outer casing, and explosive material,
respectively.

Figure 12 shows the geometry and control volume associated with the Hirsch’s imploding sphere solution.
The momentum balance for the control volume is

1

2
NVo −

1

2
MVi + 2π

∫ Ro

Ri

Vgas(r)ρexR
2 dR =

∫ ∞
0

∫ Ro

Ri

p(r, t) dr dt, (9)

and the energy balance,

1

2
CE =

1

2

(
1

2
M

)
V 2
i +

1

2

(
1

2
N

)
V 2
o + π

∫ Ro

Ri

V 2
gasρexR

2 dR, (10)

where ρex is the density of the explosive and most of the other terms are defined in Figure 12. The E in
(10) is the “Gurney energy” of the explosive material, which is defined as the amount of chemical energy
(per unit mass) in the explosive that is converted into the kinetic energy of the liner, casing, and explosive
products. As with all Gurney solutions, the velocity of the explosive product gasses Vgas is assumed to vary
linearly with R:

Vgas(R) = (Vo + Vi)
R−Ri

Ro −Ri
− Vi. (11)

11

Finally, the right-hand side of (9) (the impulse integral) is assumed to take the form∫ ∞
0

∫ Ro

Ri

p(r, t) dr dt = aπmoVi
(
R2

o −R2
i

)
(12)

= aπmoViR
2
i

([
Ro

Ri

]2
− 1

)
(13)

=
1

2
aM

([
Ro

Ri

]2
− 1

)
Vi (14)

where mo is the liner mass per unit projected area and a is a dimensionless constant of proportionality (taken
to be unity here).

After considerable manipulation, equations (9)-(14) can be used to produce an expression for the liner
velocity Vi:

Vi =
√

2E

/[
A

{(
M/C +

β2 + 3β + 6

10(β2 + β + 1)

)/
A +A

(
N/C +

6β2 + 3β + 1

10(β2 + β + 1)

)
− 3β2 + 4β + 3

10(β2 + β + 1)

}] 1
2

(15)
where β = Ro/Ri and A = Vo/Vi:

A = Vo/Vi =

[
M/C + a(M/C)(β2 − 1) +

β2 + 2β + 3

4(β2 + β + 1)

]/(
N/C +

3β2 + 2β + 1

4(β2 + β + 1)

)
. (16)

0 5 10 15 20 25 30
time (µs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lin
er

 v
el

oc
ity

 (
cm

/µ
s)

r = 5.0 cm
r = 4.5 cm
r = 4.0 cm
r = 3.5 cm
Gurney Approximation

Figure 13: Velocity history of four evenly-spaced points in the all-aluminum liner of the modified shaped
charge experiment compared to the Gurney solution for an imploding sphere. All points were 90◦ from the
horizontal direction (i.e., at the “top” of the liner).

To use expressions (15) and (16) to predict the liner velocity Vi, the simulations from Section 4.2 had to
be modified in two ways: the copper-aluminum liner was replaced by a all-aluminum liner, and the contact

12

surface was removed. The mass and geometric parameters of the shaped charge geometry were substituted
into (15) and (16) to obtain a value for Vi. The results are shown in Figure 13 for the SGH scheme. The liner
velocity predicted by the Gurney solution was compared to the velocity of the aluminum in the modified
simulation at four evenly-spaced points 90◦ from horizontal, i.e. the points furthest from the “edges” of the
shaped charge, and thus hopefully far enough away from the sources of asymmetry to be a good candidate
for comparison with the symmetric Gurney solution.

The result from the Gurney solution was at least of the same order of magnitude as the simulation
results — a reasonably good comparison for such a “back of the envelope” approximation to the shaped
charge configuration. There are numerous explanations for the discrepancy between the Gurney solution
and simulation results for the liner velocity:

• The geometry of the shaped charge and imploding sphere are significantly different — the shaped charge
liner is a hemisphere, not a sphere, and the shape of the high explosive is only vaguely spherical,

• The Gurney solution assumes a linear velocity distribution in the HE products — the simulation does
not,

• The Gurney solution assumes the liner is instantly accelerated by the expanding HE gasses, and thus
predicts a “steady-state” liner velocity, while the simulation obviously accounts for the unsteady motion
of the shaped charge liner, and appears to not proceed long enough to predict the “steady-state” liner
velocity (notice how the liner velocity for the R = 3.5cm point is still trending upward at the end of
the simulation).

Despite the above limitations, it is felt that the Gurney solution provides a useful “sanity check” for the
simulations in the absence of experimental data.

4.4 Numerical Error Estimation: Richardson Extrapolation

As discussed in Section 1.2, it is the job of the researcher running the simulation code to provide some esti-
mation of the numerical error present in the results of the simulation (i.e., E3). Richardson extrapolation [9],
as presented by Roache [10], can be used to provide such an estimation. One first begins with a Taylor series
expansion of a solution at two different “discretization measures” h (i.e., mesh spacings or time steps):

ff = fexact + c1 (h)
p

+ HOT (17)

fc = fexact + c1 (rh)
p

+ HOT (18)

where ff and fc are the “fine” and “coarse” numerical solutions, r is the ratio of the coarse-to-fine discretiza-
tion measures, p is the formal order-of-accuracy of the schemes used (here, p = 2), and HOT are higher-order
terms. If one neglects HOT, then

fc − ff ≈ c1(rh)p − c1(h)p (19)

≈ c1hp(rp − 1) (20)

and so

c1 ≈
fc − ff

hp (rp − 1)
(21)

and the leading error term for the coarse solution is

Ec = c1 (rh)
p

=
rp (fc − ff)
rp − 1

(22)

and for the fine,

Ef = c1 (h)
p

=
fc − ff
rp − 1

. (23)

13

To use Richardson extrapolation, then, one must have (at least) two solutions for an identical simulation,
differing only in discretization measure. For this work, the same shaped charge simulation described in
Section 4.2 was used. The “fine” mesh was identical to that of Section 4.2, and the “coarse” mesh was like
the fine, but with every other mesh line removed (i.e., r = 2). Any kind of solution could be taken as f —
here the same data used in Section 4.3 was chosen at t = 20.0µs (i.e., the liner velocity of four evenly-spaced
points 90◦ from the horizontal). A constant ∆t was used in the fine and coarse simulation runs to ensure
that both simulations ended at the same time level.

3 3.5 4 4.5 5 5.5
radius (cm)

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

u
 -

 u
e
x
a
c
t (

c
m

/µ
s)

coarse mesh
fine mesh

Figure 14: Liner velocity error as predicted by Richardson extrapolation.

Figure 14 shows the Richardson extrapolation results for SGH scheme. The magnitude of the error for
the fine mesh is on the order of 10−3.

It must be noted that the use of Richardson extrapolation to estimate the error in a calculation implicitly
assumes that the simulations are within the “asymptotic range,” i.e., HOT from (18) are small compared to
the leading error term. One method of determining this (brought to the attention of the author by Tyler
Lung), would be to first run the same simulation for a range of h, and then plot f as a function of hp, i.e.,

f(hp) = fexact + c1h
p +���:

0
HOT

f(y) ≈ fexact + c1y. (24)

where y = hp. If HOT are small, then the curve-fit of the f data plotted on a hp scale will appear as a
straight line, with the slope of the line being c1 and the y-intercept an estimation of the exact solution. This
linear region of the plot indicates the range of h for which the asymptotic range occurs.

5 Conclusions

In this work, the simulation results from a shaped charge validation test case were presented. After a brief
explanation of the numerical methods used in the simulation code and the nature of a shaped charge device,

14

the simulation results were summarized. The Staggered Grid Hydro (SGH) and Cell-Centered Hydro (CCH)
schemes as implemented in LANL’s FLAG code were were used to simulate the detonation of a bi-metallic
shaped charge with and without a frictionless contact surface in r-z axisymmetric coordinates. Results
between the two schemes were qualitatively similar, but some differences were observed. The SGH scheme
produced “wiggles” in the solution trailing the detonation shock, and pressure “spikes” were found at the
inner surface of the copper liner, and at the outer surface when the contact surface algorithm was used. A
slightly modified shaped charge simulation was compared to a Gurney approximation of an imploding sphere.
The Gurney approximation was within the same order-of-magnitude of the simulation data, indicating that
the simulation results are not ridiculous. The numerical error of the simulation was estimated to be on the
order of 10−3 using Richardson extrapolation.

Future work clearly includes comparing the simulation data to the forthcoming experiment at LANL. The
pressure “spikes” at the inner and outer edge of the copper liner are (at least to the author) unexplained and
worth investigating. More work could be done to quantify the numerical error and ensure that the simulations
are within the asymptotic range as outlined at the end of Section 4.4. Finally, it may be worthwhile to explore
using ALE to extend the life of the simulations — perhaps this would allow more opportunity to compare
the simulations to the experimental data.

Acknowledgments

This work was performed during the 2012 Computational Physics Summer Workshop, XCP-4 at the Los
Alamos National Laboratory, run by Dr. Scott Runnels. The author is thankful to Dr. Nathaniel Morgan
(mentor, XCP-8) and Tyler Lung (workshop partner) for many useful discussions and frequent assistance.

References

[1] C.E. Anderson. An overview of the theory of hydrocodes. International Journal of Impact Engineering,
5(1):33–59, 1987.

[2] F.G. Blottner. Accurate navier-stokes results for the hypersonic flow over a spherical nosetip. Journal
of Spacecraft and Rockets, 27:113, 1990.

[3] B.W. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[4] D. Burton, T. Carney, N. Morgan, S. Runnels, S. Sambasivan, and M. Shashkov. A cell centered
lagrangian godunov-like method for solid dynamics. Submitted to the Journal of Computers and Fluids,
2012.

[5] D.E. Burton. Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured
grids. In Presented at the Nuclear Explosives Code Developers Conference (NECDC), Las Vegas, NV,
25-28 Oct. 1994, volume 1, pages 25–28, 1994.

[6] R.W. Gurney. The initial velocities of fragments from bombs, shells and grenades. Technical Report
BRL Report 405, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, September 1943.

[7] E. Hirsch. Simplified and extended gurney formulas for imploding cylinders and spheres. Propellants,
Explosives, Pyrotechnics, 11(1):6–9, 1986.

[8] W.L. Oberkampf and T.G. Trucano. Verification and validation in computational fluid dynamics.
Progress in Aerospace Sciences, 38(3):209–272, 2002.

[9] L.F. Richardson. The approximate arithmetical solution by finite differences of physical problems in-
volving differential equations, with an application to the stresses in a masonry dam. Philosophical
Transactions of the Royal Society of London. Series A, 210:307–357, 1911.

15

[10] P.J. Roache. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid
Mechanics, 29(1):123–160, 1997.

[11] P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publish-
ers, 1998.

[12] W. Walters and A.P. Ground. An overview of the shaped charge concept. In 11th Annual ARL/USMA
Technical Symposium, volume 5, 2003.

[13] W.P. Walters and J.A. Zukas. Fundamentals of Shaped Charges. John Wiley & Sons, 1989.

[14] J.A. Zukas. Introduction to Hydrocodes. Elsevier, 2004.

A Altair Script

This section contains the Python script used with Altair 5.1.0 to generate the shaped charge mesh shown
in Figure 6.

import math

from altair import *

For easier coding:

pi = math.pi

tan = math.tan

cos = math.cos

sin = math.sin

atan = math.atan

MeshName = "shaped_charge"

altair.startModel(model = MeshName)

Number of cells in the theta direction.

NTheta = 90

dTheta = 0.5*pi/float(NTheta)

Where everything begins.

origin = (0.0, 0.0)#cm

Dimensions of the geometry.

RinnerCopper = 3.5#cm

RouterCopper = 4.#cm

RinnerAl = RouterCopper

RouterAl = 5.#cm

ChargeTotalHeight = 10.#cm

ChargeBottomWidth = 2.#cm

ChargeSideHeightGiven = 3.#cm

HalfTopFlatWidthGuess = 0.125#cm

Number of cells in the radial direction in the copper part.

Nr_copper = int(round((RouterCopper - RinnerCopper) / (0.5 * (RouterAl + RinnerAl) * dTheta)))

print("Nr_copper = %s" % Nr_copper)

dr = (RouterCopper - RinnerCopper) / float(Nr_copper)

Need to decide how many cells to have along the arc.

gammaGiven = tan(ChargeSideHeightGiven/(RouterAl + ChargeBottomWidth))

16

Number of cells in the theta direction for the charge ‘‘side flat.’’

NThetaChargeSideHeight = int(round(gammaGiven / dTheta))

So now I can find what the actual ChargeSideHeight will be.

ChargeSideHeight = (RouterAl + ChargeBottomWidth) * tan(NThetaChargeSideHeight*dTheta)

Find the ‘‘HalfTopFlatWidth’’.

phiGuess = tan(HalfTopFlatWidthGuess / (ChargeTotalHeight - HalfTopFlatWidthGuess))

NThetaHalfTopFlatWidth = int(round(phiGuess/dTheta))

if NThetaHalfTopFlatWidth < 1:

raise ValueError(

"Can’t create reasonable HalfTopFlatWidth with NTheta = %s. Try increasing NTheta." % NTheta

)

HalfTopFlatWidth = (

(ChargeTotalHeight * tan(NThetaHalfTopFlatWidth*dTheta)) /

(1. + tan(NThetaHalfTopFlatWidth*dTheta))

)

The points for the ‘‘flats’’ of the copper shell (i.e., the two flat parts

joining the inner and outer surface). I’m numbering them from left to right.

p1Copper = (RinnerCopper, 0.)

p2Copper = (RouterCopper, 0.)

p3Copper = (0., RinnerCopper)

p4Copper = (0., RouterCopper)

The points for the ‘‘flats’’ of the aluminum shell (i.e., the two flat

parts joining the inner and outer surface). I’m numbering them from left to

right.

p1Al = (RinnerAl, 0.)

p2Al = (RouterAl, 0.)

p3Al = (0., RouterAl)

p4Al = (0., RinnerAl)

There are lots of charge points (eight)! Here we go.

p1Ch and p2Ch will form the ‘‘flat’’ for the ‘‘imin’’ surface of the charge

block.

(r , z)

p1Ch = (RouterAl, 0.)

p2Ch = (RouterAl + ChargeBottomWidth, 0.)#cm

p3Ch = (RouterAl + ChargeBottomWidth, ChargeSideHeight)

p4Ch = (HalfTopFlatWidth, ChargeTotalHeight - HalfTopFlatWidth)

p5Ch = (0., ChargeTotalHeight - HalfTopFlatWidth)

p6Ch = (0., RouterAl)

It might be best to use contour rather than line to create the outer edge of

the charge. So that means I’ll need a list of r and z locations.

outer_charge_rz = [p2Ch, p3Ch, p4Ch, p5Ch]

shell_spacing = 0.3 # 3mm

Spacing in the ‘‘horizontal’’ (or r) direction for the air and aluminum

endplate.

#dr_endplate = (RouterCopper - RinnerCopper) / 3. # This is the radial spacing

for the previous runs.

That was a bad idea. Changing it back.

dr_endplate = dr

Maybe Dr. Morgan meant me to not refine the z direction? But that makes no

17

sense... Hmm... I could *coarsen* the z direction:

Spacing in the ‘‘vertical’’ (or z) direction for the air and aluminum

endplate.

#dz = (RouterAl) * (0.5 * pi) / float(NTheta)

#dz = 1.25 * (RouterAl) * dTheta

dz = 3. * (RouterAl) * dTheta

Theses are the points that I’ll use to define the bottom aluminum shell.

p1AlShellBot_Cu = (p1Copper[0], -shell_spacing)

p2AlShellBot_Cu = (p2Copper[0], -shell_spacing)

p1AlShellBot_Al = (p1Al[0], -shell_spacing)

p2AlShellBot_Al = (p2Al[0], -shell_spacing)

p1AlShellBot_Ch = (p1Ch[0], -shell_spacing)

p2AlShellBot_Ch = (p2Ch[0], -shell_spacing)

p1AirBot_Cu = (p1Copper[0], -50*shell_spacing)

p2AirBot_Cu = (p2Copper[0], -50*shell_spacing)

p1AirBot_Al = (p1Al[0], -50*shell_spacing)

p2AirBot_Al = (p2Al[0], -50*shell_spacing)

p1AirBot_Ch = (p1Ch[0], -50*shell_spacing)

p2AirBot_Ch = (p2Ch[0], -50*shell_spacing)

Initialize some lists that I’ll be using.

inner_copper_arc_r = []

inner_copper_arc_z = []

outer_copper_arc_r = []

outer_copper_arc_z = []

outer_aluminum_arc_r = []

outer_aluminum_arc_z = []

#theta = []

N = 360 # number of points on the curves that we’re going to make. This is not

the same as the number of cells in the theta direction.

delta = 0.5 * pi / float(N - 1) # N - 1 because python starts at 0 and ends at len - 1

for i in range(N):

inner_copper_arc_r.append(RinnerCopper * cos(float(i)*delta))

inner_copper_arc_z.append(RinnerCopper * sin(float(i)*delta))

outer_copper_arc_r.append(RouterCopper * cos(float(i)*delta))

outer_copper_arc_z.append(RouterCopper * sin(float(i)*delta))

outer_aluminum_arc_r.append(RouterAl * cos(float(i)*delta))

outer_aluminum_arc_z.append(RouterAl * sin(float(i)*delta))

Now make the contours.

inner_copper_contour = contour(’InnerCopperSurface’,

rList=inner_copper_arc_r,

zList=inner_copper_arc_z,

origin=origin)

outer_copper_contour = contour(’OuterCopperSurface’,

rList=outer_copper_arc_r,

zList=outer_copper_arc_z,

origin=origin)

inner_aluminum_contour = contour(’InnerAluminumSurface’,

rList=outer_copper_arc_r,

18

zList=outer_copper_arc_z,

origin=origin)

outer_aluminum_contour = contour(’OuterAluminumSurface’,

rList=outer_aluminum_arc_r,

zList=outer_aluminum_arc_z,

origin=origin)

inner_charge_contour = contour(’InnerChargeSurface’,

rList=outer_aluminum_arc_r,

zList=outer_aluminum_arc_z,

origin=origin)

outer_charge_contour = contour(’OuterChargeSurface’,

rzList=outer_charge_rz,

origin=origin)

Next, the ‘‘flats’’ of the copper shell.

left_flat_copper = line(’LeftCopperFlat’, p1Copper, p2Copper)

right_flat_copper = line(’RightCopperFlat’, p3Copper, p4Copper)

The ‘‘flats’’ of the aluminum shell.

left_flat_aluminum = line(’LeftAluminumFlat’, p1Al, p2Al)

right_flat_aluminum = line(’RightAluminumFlat’, p3Al, p4Al)

This is the ‘‘imin’’ edge/surface of the charge.

left_flat_charge = line(’LeftChargeFlat’, p1Ch, p2Ch)

This is the ‘‘imax’’ edge/surface of the charge.

right_flat_charge = line(’RightChargeFlat’, p6Ch, p5Ch)

Adding a aluminum shell along the bottom of the shaped charge.

bottom_al_shell_Cu = line(’BottomAluminumShell_Cu’, p1AlShellBot_Cu, p2AlShellBot_Cu)

bottom_al_shell_Cu_rmin = line(’BottomAluminumShell_Cu_rmin’, p1Copper, p1AlShellBot_Cu)

bottom_al_shell_Cu_rmax = line(’BottomAluminumShell_Cu_rmax’, p2Copper, p2AlShellBot_Cu)

bottom_al_shell_Al = line(’BottomAluminumShell_Al’, p1AlShellBot_Al, p2AlShellBot_Al)

bottom_al_shell_Al_rmin = line(’BottomAluminumShell_Al_rmin’, p1Al, p1AlShellBot_Al)

bottom_al_shell_Al_rmax = line(’BottomAluminumShell_Al_rmax’, p2Al, p2AlShellBot_Al)

bottom_al_shell_Ch = line(’BottomAluminumShell_Ch’, p1AlShellBot_Ch, p2AlShellBot_Ch)

bottom_al_shell_Ch_rmin = line(’BottomAluminumShell_Ch_rmin’, p1Ch, p1AlShellBot_Ch)

bottom_al_shell_Ch_rmax = line(’BottomAluminumShell_Ch_rmax’, p2Ch, p2AlShellBot_Ch)

Creating lines for air layer below aluminum shell.

bottom_air_Cu = line(’BottomAir_Cu’, p1AirBot_Cu, p2AirBot_Cu)

bottom_air_Cu_rmin = line(’BottomAir_Cu_rmin’, p1AlShellBot_Cu, p1AirBot_Cu)

bottom_air_Cu_rmax = line(’BottomAir_Cu_rmax’, p2AlShellBot_Cu, p2AirBot_Cu)

bottom_air_Al = line(’BottomAir_Al’, p1AirBot_Al, p2AirBot_Al)

bottom_air_Al_rmin = line(’BottomAir_Al_rmin’, p1AlShellBot_Al, p1AirBot_Al)

bottom_air_Al_rmax = line(’BottomAir_Al_rmax’, p2AlShellBot_Al, p2AirBot_Al)

bottom_air_Ch = line(’BottomAir_Ch’, p1AirBot_Ch, p2AirBot_Ch)

bottom_air_Ch_rmin = line(’BottomAir_Ch_rmin’, p1AlShellBot_Ch, p1AirBot_Ch)

bottom_air_Ch_rmax = line(’BottomAir_Ch_rmax’, p2AlShellBot_Ch, p2AirBot_Ch)

Need to make some ‘‘segments’’, I guess.

inner_copper_segment = segment(inner_copper_contour)

outer_copper_segment = segment(outer_copper_contour)

19

inner_aluminum_segment = segment(inner_aluminum_contour)

outer_aluminum_segment = segment(outer_aluminum_contour)

inner_charge_segment = segment(inner_charge_contour)

outer_charge_segment = segment(outer_charge_contour)

left_flat_copper_segment = segment(left_flat_copper)

right_flat_copper_segment = segment(right_flat_copper)

left_flat_aluminum_segment = segment(left_flat_aluminum)

right_flat_aluminum_segment = segment(right_flat_aluminum)

left_flat_charge_segment = segment(left_flat_charge)

right_flat_charge_segment = segment(right_flat_charge)

bottom_al_shell_Cu_segment = segment(bottom_al_shell_Cu)

bottom_al_shell_Cu_segment_rmin = segment(bottom_al_shell_Cu_rmin)

bottom_al_shell_Cu_segment_rmax = segment(bottom_al_shell_Cu_rmax)

bottom_al_shell_Al_segment = segment(bottom_al_shell_Al)

bottom_al_shell_Al_segment_rmin = segment(bottom_al_shell_Al_rmin)

bottom_al_shell_Al_segment_rmax = segment(bottom_al_shell_Al_rmax)

bottom_al_shell_Ch_segment = segment(bottom_al_shell_Ch)

bottom_al_shell_Ch_segment_rmin = segment(bottom_al_shell_Ch_rmin)

bottom_al_shell_Ch_segment_rmax = segment(bottom_al_shell_Ch_rmax)

bottom_air_Cu_segment = segment(bottom_air_Cu)

bottom_air_Cu_segment_rmin = segment(bottom_air_Cu_rmin)

bottom_air_Cu_segment_rmax = segment(bottom_air_Cu_rmax)

bottom_air_Al_segment = segment(bottom_air_Al)

bottom_air_Al_segment_rmin = segment(bottom_air_Al_rmin)

bottom_air_Al_segment_rmax = segment(bottom_air_Al_rmax)

bottom_air_Ch_segment = segment(bottom_air_Ch)

bottom_air_Ch_segment_rmin = segment(bottom_air_Ch_rmin)

bottom_air_Ch_segment_rmax = segment(bottom_air_Ch_rmax)

Now, discretizations.

This should discretize the ‘‘flats’’ evenly cells with ‘dr’ spacing.

left_flat_copper_segment.equalArcDistrib(dr)

right_flat_copper_segment.equalArcDistrib(dr)

left_flat_aluminum_segment.equalArcDistrib(dr)

right_flat_aluminum_segment.equalArcDistrib(dr)

left_flat_charge_segment.equalArcDistrib(dr)

right_flat_charge_segment.equalArcDistrib(dr)

bottom_al_shell_Cu_segment.equalArcDistrib(dr_endplate)

bottom_al_shell_Cu_segment_rmin.equalArcDistrib(dz)

bottom_al_shell_Cu_segment_rmax.equalArcDistrib(dz)

bottom_al_shell_Al_segment.equalArcDistrib(dr_endplate)

bottom_al_shell_Al_segment_rmin.equalArcDistrib(dz)

bottom_al_shell_Al_segment_rmax.equalArcDistrib(dz)

bottom_al_shell_Ch_segment.equalArcDistrib(dr_endplate)

20

bottom_al_shell_Ch_segment_rmin.equalArcDistrib(dz)

bottom_al_shell_Ch_segment_rmax.equalArcDistrib(dz)

bottom_air_Cu_segment.equalArcDistrib(dr_endplate)

bottom_air_Cu_segment_rmin.equalArcDistrib(dz)

bottom_air_Cu_segment_rmax.equalArcDistrib(dz)

bottom_air_Al_segment.equalArcDistrib(dr_endplate)

bottom_air_Al_segment_rmin.equalArcDistrib(dz)

bottom_air_Al_segment_rmax.equalArcDistrib(dz)

bottom_air_Ch_segment.equalArcDistrib(dr_endplate)

bottom_air_Ch_segment_rmin.equalArcDistrib(dz)

bottom_air_Ch_segment_rmax.equalArcDistrib(dz)

This will divide the inner and outer surfaces of the shell into NTheta cells.

inner_copper_segment.equalAngleDistrib(NTheta)

outer_copper_segment.equalAngleDistrib(NTheta)

inner_aluminum_segment.equalAngleDistrib(NTheta)

outer_aluminum_segment.equalAngleDistrib(NTheta)

inner_charge_segment.equalAngleDistrib(NTheta)

outer_charge_segment.equalAngleDistrib(NTheta)

Make some slides. Or not, for now.

outer_copper_segment.slide("slide1") # use this only.

#inner_aluminum_segment.slide("slide")

#outer_aluminum_segment.slide("slide2") # and this one.

#inner_charge_segment.slide("slide")

Final step: make the blocks.

copper_block = block(’CopperBlock’,

iMin=left_flat_copper_segment,

iMax=right_flat_copper_segment,

iRes=len(inner_copper_segment),

jMin=inner_copper_segment,

jMax=outer_copper_segment,

#jRes=len(left_flat_copper_segment),

material=’0003’)

aluminum_block = block(’AluminumBlock’,

iMin=left_flat_aluminum_segment,

iMax=right_flat_aluminum_segment,

iRes=len(inner_aluminum_segment),

#jMin=inner_aluminum_segment,

jMin=outer_copper_segment,

jMax=outer_aluminum_segment,

#jRes=len(left_flat_aluminum_segment),

material=’0002’)

charge_block = block(’ChargeBlock’,

iMin=left_flat_charge_segment,

#iMax=right_flat_charge_segment,

#iRes=len(inner_charge_segment),

#feather=’Distributed’,

jMin=outer_aluminum_segment,

jMax=outer_charge_segment,

#jRes=len(left_flat_charge_segment),

material=’0001’)

21

aluminum_shell_Cu = block(’AluminumShellCu’,

#iMin=left_flat_copper_segment,

#iMax=bottom_al_shell_Cu_segment,

iMax=copper_block.iMin().coarsen(),

#iMin=bottom_al_shell_Cu_segment,

jMin=bottom_al_shell_Cu_segment_rmin,

jMax=bottom_al_shell_Cu_segment_rmax,

#iRes=1,

material=’0004’)

bottom_al_shell_Cu_segment_rmax.slide(’slide1’)

aluminum_shell_Al = block(’AluminumShellAl’,

iMax=left_flat_aluminum_segment.coarsen(),

iMin=bottom_al_shell_Al_segment.coarsen(),

jMin=bottom_al_shell_Cu_segment_rmax,

jMax=bottom_al_shell_Al_segment_rmax,

material=’0002’)

aluminum_shell_Ch = block(’AluminumShellCh’,

iMax=left_flat_charge_segment.coarsen(),

iMin=bottom_al_shell_Ch_segment.coarsen(),

jMin=bottom_al_shell_Al_segment_rmax,

jMax=bottom_al_shell_Ch_segment_rmax,

material=’0002’)

Defining air blocks below the aluminum plate.

#air_Cu = block(’AirCu’,

#iMin=bottom_al_shell_Cu_segment,

#iMax=bottom_air_Cu_segment,

#jMin=bottom_air_Cu_segment_rmin,

#jMax=bottom_air_Cu_segment_rmax,

#material=’0004’)

air_Cu = block(’AirCu’,

iMax=aluminum_shell_Cu.iMin(),

#iMax=bottom_air_Cu_segment,

#dx1 = dr,

jMin=bottom_air_Cu_segment_rmin,

jMax=bottom_air_Cu_segment_rmax,

material=’0004’)

bottom_air_Cu_segment_rmax.slide(’slide1’)

air_Al = block(’AirAl’,

iMax=aluminum_shell_Al.iMin(),

#iMax=bottom_air_Al_segment,

#dx1 = dr,

jMin=bottom_air_Cu_segment_rmax,

jMax=bottom_air_Al_segment_rmax,

material=’0004’)

air_Ch = block(’AirCh’,

#iMin=aluminum_shell_Ch.iMin(),

iMax=aluminum_shell_Ch.iMin(),

#iMax=bottom_air_Ch_segment,

22

#dx1 = dr,

jMin=bottom_air_Al_segment_rmax,

jMax=bottom_air_Ch_segment_rmax,

material=’0004’)

Finish up!

altair.endModel(dumpX3D=True,npes=30)

vim:sw=4

B Gurney Solution Script

The Gurney solution described in Section 4.3 was evaluated using a Python script. The value of
√
E =

2.90km/s was taken from the PBX-9404 entry in the table on page 51 of Ref. [13].

This calculates the gurney solution for an imploding sphere.

from math import pi, sqrt

Densities of the copper, aluminum and high explosive.

r_cu = 8.930 # g/cm3

r_al = 2.7 # g/cm3

r_he = 1.84 # g/cm3

Volumes of the copper, aluminum, and high explosives

V_cu = 2.5 * pi # cm3

V_al = 6.0 * pi # cm3

#V_he = 59.0 / 3.0 * pi # cm3 # Error!

V_he = 178.0 * pi # cm3

The Gurney velocity, sqrt(2*E), where E is the Gurney energy, or the amount of

energy that is converted into kinetic energy of the liner and high explosive

after detonation.

G = 2.9 # km/s

b (beta in the reference I’m working off of) is the ratio of the outer and

inner radius of the high explosive.

#b = (2.0 * sqrt(218.0)) / (5.0) # cm/cm

Actually, beta might be the ratio of the outer and inner radius of the entire

assembly. In that case, it would be

#b = (2.0 * sqrt(218.0)) / (3.5) # cm/cm

From my better estimate of V_he, I calculated a ‘‘effective hemispherical

radius’’ of the HE.

#radius_he_effective = (2. * 3./4. / pi * V_he)**(1./3.)

#print("radius_he_effective = %s cm" % radius_he_effective)

Better ‘‘effective hemispherical radius’’ (earlier I was saying that the

shaped charge was a *solid* hemisphere -- now I’ve removed the air and liner

volume from the ‘‘effective hemisphere’’).

radius_he_effective = 7.87030458316

b = (radius_he_effective) / (3.5) # cm/cm

a is a dimensionless constant of proportionality that is approximately unity in

all the references I’ve seen.

#a = 1.0

Mass of the liner. In the ‘‘real’’ shaped charge, there is an inner copper

23

shell and outer aluminum shell, but here we’ll say it’s all aluminum.

M = r_al * (V_cu + V_al) # g

for a in [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

1.9, 2.0, 2.5, 3.0, 3.5]:

#for a in [1.0,]:

#for HE_vol_factor in [0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

#1.9, 2.0, 3.0, 4.0, 5.0, 10.0, 20.0, 30.0]:

for HE_vol_factor in [1.0,]:

Mass of the high explosive.

C = r_he * V_he * HE_vol_factor # g

A is an intermediate parameter that happens to be equal to the ratio of the

outer and inner velocity of the high explosive.

A =(

(

M/C

+ a*(M/C)*(b**2 - 1.0)

+ (b**2 + 2.0*b + 3.0)/(4.0*(b**2 + b + 1.0))

)

/ ((3.0*b**2 + 2.0*b + 1.0)/(4.0*(b**2 + b + 1.0)))

)

Now get what we’re here for: the velocity of the liner.

Vi =(

G /

sqrt(A * ((M/C + (b**2 + 3.0*b + 6.0)/(10.0*(b**2 + b + 1.0)))/A +

A*(6.0*b**2 + 3.0*b + 1.0)/(10.0*(b**2 + b + 1.0)) - (3.0*b**2 +

4.0*b + 3.0)/(10.0*(b**2 + b + 1.0))))) # same units as ‘G’.

Convert the liner velocity from km/s to cm/microsecs.

Vi = 0.1 * Vi

print("HE_vol_factor = %s, a = %s, Vi = %s cm/microsecs" % (HE_vol_factor, a, Vi))

24

2012 Computational Physics Student Summer Workshop: Final Reports

Rad-Hydro Verification

(Scott Ramsey, mentor)

Development and Implementation of
Radiation-Hydrodynamics Verification

Test Problems
Computational Physics Student Summer Workshop

Marcath, Matthew J.;Wang, Matthew Y.
7/20/2012

Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale
numerical simulation software that solves the same set of equations. The one-dimensional, spherically
symmetric Coggeshall #9 and #11 analytic solutions, cell-averaged over a uniform-grid have been
developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian
Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been
shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE
solutions with and without the heat conduction module. Solution convergence was analyzed based on
radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-
order convergence was expected for both cases. The global L1 errors were used to estimate the
convergence rates with and without the heat conduction module implemented.

1

Contents
Introduction ... 3

Verification ... 4

Initialization .. 5

Radiation-Hydrodynamic Equations ... 5

Coggeshall Equations.. 6

Discretization of Cell Quantities ... 10

Analysis and Data ... 10

Conclusions ... 12

Acknowledgements ... 13

References ... 14

Appendices .. 15

A: The Radiation Flux Expression ... 15

B: Heat Conduction Invariance .. 17

C: Initialization Discrepancies in xRAGE ... 19

D: Coggeshall Solution 9 ... 20

Viewgraph Norms for Conserved Cell-Averages with and without the Heat Conduction
Module Implemented .. 20

Viewgraph Norms for Unconserved Cell-Averages with and without the Heat Conduction
Module Implemented .. 22

Viewgraph Norms with the Heat Conduction Module Not Implemented with and without
Conserved Cell-Averages ... 24

Viewgraph Norms with the Heat Conduction Module Implemented with and without
Conserved Cell-Averages ... 26

Conserved, Heat Conduction On .. 28

Non-Conserved, Heat Conduction On .. 32

Conserved, Heat Conduction Off .. 36

Non-Conserved, Heat Conduction Off .. 40

E: Coggeshall Solution 11 ... 44

Viewgraph Norms for Conserved Cell-Averages with and without the Heat Conduction
Module Implemented .. 44

2

Viewgraph Norms for Unconserved Cell-Averages with and without the Heat Conduction
Module Implemented .. 46

Viewgraph Norms with the Heat Conduction Module Not Implemented with and without
Conserved Cell-Averages ... 48

Viewgraph Norms with the Heat Conduction Module Implemented with and without
Conserved Cell-Averages ... 50

Conserved, Heat Conduction On .. 52

Non-conserved, Heat Conduction On ... 56

Conserved, Heat Conduction Off .. 60

Non-conserved, Heat Conduction Off .. 64

3

Introduction
The Los Alamos National Laboratory Eulerian Applications Project radiation-

hydrodynamics code xRAGE [1] solves a version of the radiation-hydrodynamics equations
numerically [2]. Since the code solution is numerically derived, there are expected discretization
errors associated with any solution found through iterating from initial conditions through time
for a given spatial mesh. Since the spatial mesh and time stepping can be varied, the
convergence rate of the code solution to an exact solution can easily be found. While the code
does have adaptive mesh refinement and adaptive time stepping capabilities, only fixed time step
and meshes for individual solutions will be used for ease of analysis.

Convergence rate analysis allows for quantified verification of the code. Verifying the
code’s numerical solution method ensures that the code is solving the intended equations
correctly and as expected. Verification, however, does not insist that the code is producing
solutions in agreement with experimental data. This analysis focuses on convergence rates as a
function of spatial mesh size. Convergence rate refers to the rate at which the code approaches
the exact solution over a series of spatial mesh reductions. Convergence can also be thought of
as the rate at which error in the solution is reduced for each refinement of spatial mesh.
Typically, the analytic solution used in convergence analysis is derived from the same set of
equations that the code’s numerical method is derived. There are expected rates of convergence
for each solution method, and enabling different modules of the xRAGE code can affect these
rates. In finding these rates, aspects of the code may be verified as functioning correctly. For
smooth one-dimensional problems second-order convergence rates are expected of xRAGE’s
default hydrodynamics solver, which is a Godunov type solver. Shocks in the problem reduce
the convergence rate to first order.

To analyze convergence of the xRAGE code it is convenient to use an analytically
derived solution of the governing equations as the reference solution. The Coggeshall solutions
nine and eleven [3] are a good choice for convergence analysis because they are smooth and
physically meaningful. In the past, xRAGE has been successfully verified using solution eight,
which has also been implemented in the regression test problem modules [4]. This analysis uses
solutions nine and eleven. Both solutions are spherically symmetric and invariant with respect to
radiation heat conduction, providing a unique opportunity to analyze heat conduction modules of
xRAGE. Coggeshall created a closed-form radiation heat flux equation. The methods and
assumptions that Coggeshall used to create a closed form of the radiation-hydrodynamics
equations were scrutinized and confirmed to be reasonable in this analysis. Lie group theory was
used to find analytic solutions to the set of equations. There are many possible analytic
solutions, however only a fraction are physically meaningful.

xRAGE solves the radiation-hydrodynamics equations for a given discretization, meaning
it produces discrete values for volume elements. These discrete values are analogous to cell-
averaged quantities. It is necessary for practical analysis of xRAGE solutions to compare the
xRAGE solutions to some form of cell-averaged quantities derived from the reference solution.
There are many methods to find the cell-averages, however only the standard mean and
conserved quantity weighting are included in this analysis. Conserved quantity weighting is
thought to be most analogous to the modes with which xRAGE forms solutions. The algorithms
that the code uses conserve mass, momentum, and energy. It has been proposed that computing
cell-averages using the three conserved quantities will produce averages that most accurately
show the convergence behavior of the code. The analysis presented compares the two methods
of producing cell-averages.

4

Verification
 Code verification is the process of confirming that the code solves the prescribed
equations as intended. xRAGE solves the radiation-hydrodynamics equations. Verification of
xRAGE will involve determining whether xRAGE solves these equations properly and at the
appropriate convergence rate. The convergence rate, n, of the spatial mesh is the exponential
rate at which the code more accurately approximates the solution for subsequently smaller spatial
mesh sizes with respect to the error metric, E. Convergence rate varies based on the numerical
method used to solve the equations. For smooth problems with no shocks, second order
convergence is expected for discretized spatial mesh refinements. However, slight deviations
from this value are possible because of numerical errors.

𝐸(𝛥𝑥) ≈ 𝐶𝛥𝑥𝑛

𝐸 = 𝑒𝑟𝑟𝑜𝑟 𝑚𝑒𝑡𝑟𝑖𝑐

𝐶 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

(1) 𝑙𝑜𝑔(𝐸) ≈ 𝑛 𝑙𝑜𝑔(𝛥𝑥) + 𝑙𝑜𝑔 (𝐶)

Δ𝑥 = 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑚𝑒𝑠ℎ 𝑠𝑖𝑧𝑒

𝑛 = 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

 To verify a code, it is most useful to have an analytic solution to the equations to which
the code produces an approximate solution. The analytic solution often must be found by
making assumptions or simplifications in the radiation heat flux term and problem geometry.
While the benefit of a numerical code package is to produce solutions to complicated problems,
simple problems are useful for code verification purposes. The Coggeshall solutions [3] come
from a few symmetry assumptions and the postulated closed-form of the radiation heat flux. The
assumptions and simplifications must be justified and done appropriately to produce an analytic
solution that is consistent with a numerical approximation.
 The first step of verification is to compare the code solution to the expected analytic
solution. Visualization of the code and analytic solutions is known as finding the “viewgraph
norm;” while not a rigorous analysis of the code, this shows if the code solution is similar to the
analytic solution. Once it is confirmed that the viewgraph norm is satisfactory, the convergence
rate analysis should be performed. The convergence rate should perform as well as the solution
algorithm predicts but can be different for each observed quantity and for each problem type.
For Coggeshall solutions nine and eleven, the algorithm should produce solutions that converge
at a second order rate in space.
 Convergence rate is not constant for all mesh spacings. There are regions for very small
and very large mesh sizes that converge irregularly or very little. In the case of very small
spatial meshes, the convergence becomes dominated by the time step and not the spatial mesh.
The case of very large spatial meshes has irregular and unpredictable convergence rates. Only
between these two regions does a nearly constant spatial convergence rate occur. These regions
occur at different size meshes for each numerical method and each test problem [5].

5

Initialization
xRAGE presents difficulties at boundaries especially where problems that extend

infinitely in space must be restricted to a finite region that is manageable by the code. The code
treats the problem as symmetric about the origin. For infinite valued quantities near the origin,
large numeric discrepancies are often observed. Usually these discrepancies dampen quickly to
the analytic solution away form the origin, but numeric error in initialization can potentially
propagate throughout a problem in time and space. At the outer boundary of the problem, frozen
conditions are applied. A frozen outer boundary cell condition fixes the initial conditions at
those outer cells for all time steps. This is a necessary approximation, but it is evident even in a
viewgraph norm that it does not agree well with the analytic solution. However, in most cases
the solution quickly approaches the analytic away from the boundary.

The outer boundary condition is non-physical and a result of simplifications that must be
made to initialize the problem. The Coggeshall solutions are defined for all space, but must be
restricted to a finite space in xRAGE. This restriction artificially imposes a false boundary
condition that does not exist in the exact solution. Since the code solution is physically
applicable in all ranges excluding near the outer boundary, it is appropriate to compare only
these portions of the analytic and code solution.

Radiation-Hydrodynamic Equations
xRAGE and Coggeshall solve some form of the non-relativistic radiation-hydrodynamic

equations. The equations consist of two sets of terms: the material state terms and the radiation
heat terms. The non-relativistic radiation-hydrodynamic equations are as follows.

Conservation of Mass

(2) 𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝑢�⃑) = 0

Conservation of Momentum
(3) 𝜕

𝜕𝑡
�𝜌𝑢�⃑ + �⃑�

𝑐2
� + ∇𝑃𝑚𝑎𝑡 + ∇ ∙ (𝜌𝑢�⃑ 𝑢�⃑ + 𝑃𝑟𝑎𝑑) = 0

Conservation of Energy

(4) 𝜕
𝜕𝑡
�1
2
𝜌𝑢2 + 𝐸𝑚𝑎𝑡 + 𝐸𝑟𝑎𝑑� + ∇ ∙ ��1

2
𝜌𝑢2 + 𝐸𝑚𝑎𝑡 + 𝑃𝑚𝑎𝑡� 𝑢�⃑ + �⃑�� = 0

Where the subscript “mat” refers to the gas material and subscript “rad” refers to the radiation.

𝑐 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡

𝜌 = 𝜌(𝑟, 𝑡) ≡ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑃 = 𝑃(𝑟, 𝑡) ≡ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑢�⃑ = 𝑢�⃑ (𝑟, 𝑡) ≡ 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

6

�⃑� = �⃑�(𝑟, 𝑡) ≡ ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥

𝐸 = 𝐸(𝑟, 𝑡) ≡ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

The radiation-hydrodynamic equations can be reduced to the Euler hydrodynamic
equations [6]. The equations are reduced to (5), (6), and (7) by neglecting the radiation energy
density and radiation pressure. Also �⃑�

𝑐2
≪ 1 is assumed in (3), so this term is neglected.

Conversely, the Coggeshall solutions used in this analysis have the property of heat conduction
invariance which ultimately reduces the set of radiation-hydrodynamic equations to the
hydrodynamic equations.

Conservation of Mass

(5) 𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝑢�⃑) = 0

Conservation of Momentum
(6) 𝜕

𝜕𝑡
(𝜌𝑢�⃑) + ∇𝑃𝑚𝑎𝑡 + ∇ ∙ (𝜌𝑢�⃑ 𝑢�⃑) = 0

Conservation of Energy

(7) 𝜕
𝜕𝑡
�1
2
𝜌𝑢2 + 𝐸𝑚𝑎𝑡� + ∇ ∙ ��1

2
𝜌𝑢2 + 𝐸𝑚𝑎𝑡 + 𝑃𝑚𝑎𝑡� 𝑢�⃑ + �⃑�� = 0

∇ ∙ �⃑� = 0

Coggeshall Equations
The radiation-hydrodynamic equations can be reduced to the form used by Coggeshall to

find analytic solutions for a one-dimensional case [7]. Coggeshall assumes the ideal gas law.

𝑃 = Γ𝜌𝑇

Γ = 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝛾 = 𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

Conservation of Mass

𝜕𝜌
𝜕𝑡

+ ∇ ∙ (𝜌𝑢�⃑) = 0

∇ ∙ 𝑓 = 1
𝑟
𝜕(𝑟𝑓)
𝜕𝑟

 for one-dimensional cylindrical coordinates

∇ ∙ 𝑓 = 1
𝑟2

𝜕(𝑟2𝑓)
𝜕𝑟

 for one-dimensional spherical coordinates

The following will be carried out in spherical symmetry.

7

𝜕𝜌
𝜕𝑡

+
1
𝑟2
𝜕(𝑟2𝜌𝑢�⃑)

𝜕𝑟
= 0

(8) 𝜌𝑡 + 2𝜌𝑢

𝑟2
+ 𝜌𝑟𝑢 + 𝜌𝑢𝑟 = 0

Conservation of Momentum

𝜕
𝜕𝑡

(𝜌𝑢�⃑) + ∇𝑃 + ∇ ∙ 𝜌𝑢�⃑ 𝑢�⃑ − 𝑢�⃑ �
𝜕𝜌
𝜕𝑡

+ ∇(𝜌𝑢�⃑)� = 0

𝑢�⃑ 𝜌𝑡 + 𝜌𝑢�⃑ 𝑡 + ∇𝑃𝑚𝑎𝑡 + 𝑢�⃑ (∇𝜌 ∙ 𝑢�⃑) + 2𝑢�⃑ 𝜌(∇ ∙ 𝑢�⃑) − 𝑢�⃑ 𝜌𝑡 − 𝑢�⃑ (𝜌∇ ∙ 𝑢�⃑) − 𝑢�⃑ (𝑢�⃑ ∙ ∇𝜌) = 0

𝜌𝑢�⃑ 𝑡 + ∇𝑃 + 𝑢�⃑ 𝜌(∇ ∙ 𝑢�⃑) = 0

𝜌 �
𝜕
𝜕𝑡

+ 𝑢�⃑ ∙ ∇� 𝑢�⃑ + ∇𝑃𝑚𝑎𝑡 = 0

𝜌𝑢�⃑ 𝑡 + 𝜌𝑢�⃑ 𝑢�⃑ 𝑟 +
𝜕
𝜕𝑟

(Γ𝜌𝑇) = 0

(9) 𝑢�⃑ 𝑡 + 𝑢�⃑ 𝑢�⃑ 𝑟 + Γ𝜌𝑟𝑇

𝜌
+ Γ𝑇𝑟 = 0

Conservation of Energy

𝛿𝐸
𝛿𝑡

+ 𝑢�⃑ ∙ ∇𝐸 +
1
𝜌
𝑃∇ ∙ 𝑢�⃑ +

1
𝜌
∇ ∙ �⃑� = 0

𝐸 =
Γ

𝛾 − 1
𝑇

Γ

𝛾 − 1
𝑇𝑡 + 𝑢�⃑

𝜕
𝜕𝑟 �

Γ
𝛾 − 1

𝑇� +
Γ𝑇
𝜌𝑟2

𝜕
𝜕𝑟

(𝑟2𝑢�⃑) +
1
𝜌𝑟2

𝜕
𝜕𝑟
�𝑟2�⃑�� = 0

(10) Γ

𝛾−1
(𝑇𝑡 + 𝑢�⃑ 𝑇𝑟) + Γ𝑇𝑢�⃑ 𝑟 + 2Γ𝑇𝑢��⃑

𝑟
+ 𝐹𝑟����⃑

𝜌
+ 2�⃑�

𝜌𝑟
= 0

From these equations and a closure model for the radiation heat flux, �⃑� = −𝐾(𝜌,𝑇)∇𝑇
(appendix A), Coggeshall uses Lie group theory to find a set of analytic solutions. The general
forms of the equations contain a geometry factor k (𝑘 = 1 for cylindrical and 𝑘 = 2 for
spherical), the adiabatic exponent γ, and conduction constants α and β. The specific heat at
constant volume, 𝐶𝑉, was set to unity in the code input deck, so specific internal energy equal to
temperature.

(11) 𝑒 = 𝐶𝑉𝑇

8

Solution #9

𝜌(𝑟, 𝑡) = 𝜌0𝑟−(2𝛽+𝑘+7)/𝛼𝑡−2[𝛼(𝑘+1)−2𝛽−𝑘−7]/𝛼[2+(𝛾−1)(𝑘+1)]

𝑢(𝑟, 𝑡) =
2𝑟

𝑡[2 + (𝛾 − 1)(𝑘 + 1)]

𝑇(𝑟, 𝑡) =
2𝛼(𝛾 − 1)(𝑘 + 1)𝑟2

𝑡2Γ[2 + (𝛾 − 1)(𝑘 + 1)]2(2𝛼 − 2𝛽 − 𝑘 − 7)

For the analysis presented here, let 𝛼 = −1, 𝛽 = 2, 𝛾 = 5/3, and 𝑘 = 2. α and β are
experimentally derived quantities [3]. γ=5/3 indicates a monatomic gas.

(12) 𝜌(𝑟, 𝑡) = 𝜌0𝑟13𝑡−8

(13) 𝑢(𝑟, 𝑡) = 𝑟

2𝑡

(14) 𝑇(𝑟, 𝑡) = 𝑟2

60Γ𝑡2

(15) 𝑃(𝑟, 𝑡) = 𝜌0

60
𝑟15𝑡−10

Figure 1: Coggeshall nine normalized solutions for key flow variables.

9

Solution #11

𝜌(𝑟, 𝑡) = 𝜌0𝑟(𝛾−1)(𝑘+1)−2𝑡1−𝑘−(𝛾−1)(𝑘+1)

𝑢(𝑟, 𝑡) = 𝑟/𝑡

𝑇(𝑟, 𝑡) = 𝑇0𝑟2−(𝛾−1)(𝑘+1)𝑡−2

With the constraint, 𝛼 = 𝛽 + 4 + (𝑘 − 1)/[2 − (𝛾 − 1)(𝑘 + 1)]

For the analysis presented here, let 𝛼 = −1, 𝛽 = 2, and 𝑘 = 2 then 𝛾 = 12/7.

(16) 𝜌(𝑟, 𝑡) = 𝜌0𝑟1/7𝑡−22/7

(17) 𝑢(𝑟, 𝑡) = 𝑟/𝑡

(18) 𝑇(𝑟, 𝑡) = 𝑇0𝑟

−17𝑡−2

(19) 𝑃(𝑟, 𝑡) = Γ𝑇0𝜌0t−36/7

Figure 2: Coggeshall eleven normalized solutions for key flow variables.

With appropriate constants applied, these solutions are physically meaningful. The velocity
solutions increase linearly through space and decrease inversely with time. This velocity
behavior, with the density and temperature behaviors, are consistent with an expanding and
cooling system for both solutions. Solution nine pressure increases with power law variation

10

with respect to radius, but decreases inversely with time. Whereas, solution eleven pressure
decreases with power law variation with respect to time and is invariant in space.
These solutions have the feature of being invariant with respect to heat conduction as indicated
by the ∇ ∙ �⃑� = 0 condition that Coggeshall assumes. The heat flux into a volume is equal to the
heat out of a volume, so there is no net effect on the volume by heat (appendix B).

Discretization of Cell Quantities
 Given a spatial discretization, xRAGE produces discrete solutions: one zone-averaged
value for each flow variable for each mesh zone. Since the code solution is discretized, a method
must be introduced to compose corresponding discrete values from the analytic solutions. Using
zone center flow variable values directly from the reference solution can produce misleading
convergence results [4]. It is more useful to compare a zone-averaged quantity with the code
solution, because it is more analogous to the code solution output. This analysis uses cell
volume-averaged quantities to compare with the code solution. Cell-averages used in this
analysis were produced by weighting the average with conserved quantities and by a standard
mean. The conserved quantities refer to the quantities that xRAGE conserves, which are mass,
momentum, and energy. Cell-averaged density is conserved since it is already a function of a
conserved quantity, mass.

Table 1: Conserved and non-conserved cell-averaging equations over individual mesh zones used in the analysis.
Cell-Average Non-conserved Conserved

Density �̅� =
∫ 𝑟2𝑑𝑟𝜌(𝑟)
∫ 𝑟2𝑑𝑟

 �̅� =
∫ 𝑟2𝑑𝑟𝜌(𝑟)
∫ 𝑟2𝑑𝑟

Velocity 𝑢� =
∫ 𝑟2𝑑𝑟𝑢(𝑟)
∫ 𝑟2𝑑𝑟

 𝑢� =
∫ 𝑟2𝑑𝑟𝜌(𝑟)𝑢(𝑟)
∫ 𝑟2𝑑𝑟𝜌(𝑟)

Specific Internal Energy �̅� =
∫ 𝑟2𝑑𝑟𝑒(𝑟)
∫ 𝑟2𝑑𝑟

𝑇𝐸 = 4𝜋�𝑟2𝑑𝑟𝜌(𝑟)[𝑒(𝑟) +

1
2
𝑢2(𝑟)]

�̅� =
�𝑇𝐸𝜌� −

1
2𝑢�

2�

∫𝑟2𝑑𝑟
 [8]

Pressure 𝑃� =
∫ 𝑟2𝑑𝑟Γ𝜌(𝑟)𝑇(𝑟)

∫ 𝑟2𝑑𝑟
 𝑃� = Γ𝜌𝑐𝑜𝑛𝑠�������𝑒𝑐𝑜𝑛𝑠�������

 The cell-averaged quantities are used to provide initial conditions to input into xRAGE
for each mesh cell. The reason for using cell-averaged quantities for initialization is to provide a
quantity that is most similar to a spatially discretized quantity that the code would produce.
Also, the cell averages are used as the exact solution to compare with the code solution and form
error quantities. The cell-average method used for the initial conditions must be used in analysis
of the code solution.

Analysis and Data
 xRAGE solutions for the quantities of interest were compared with their analytically
derived counterparts to produce a volume weighted global L1 norm (21) for each spatial mesh
size for a given time step. The global L1 norm is derived from the continuous L1 norm (20).

11

Since the outer boundary condition is not consistent with the exact solution of the outer
boundary, points beyond a radius of 2.75 are not included in the convergence analysis. The plots
for the L1 error norms at each time step as well as plots for convergence analysis at 3.0 s are
attached in appendix D and E. The linear curve fits in the convergence analysis plots provide a
slope that is used to represent the convergence rate for the given quantity at a given time in the
solution. It was found that 50, 100, and 200 mesh zones appear to be in the convergence region
dominated by the spatial mesh size for most state quantities.

(20) 𝐿1 =
∫ 𝑑𝑉 �𝑓𝑒𝑥𝑎𝑐𝑡 −𝑓𝑥𝑅𝐴𝐺𝐸�
𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

∫ 𝑑𝑉𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

(21) 𝐸𝑟𝑟𝑜𝑟 ≡ 𝐿1 ≈
∑ �𝑓𝑒𝑥𝑎𝑐𝑡,𝑖−𝑓𝑥𝑅𝐴𝐺𝐸,𝑖�(𝑥𝑚𝑎𝑥,𝑖

3 −𝑥𝑚𝑖𝑛,𝑖
3)𝑁

𝑖=1
∑ (𝑥𝑚𝑎𝑥,𝑖

3 −𝑥𝑚𝑖𝑛,𝑖
3)𝑁

𝑖=1

Table 2: Convergence rates at time 2.0 s for key quantities

t = 2.0 s Heat Conduction Module Cell-Averages Density Velocity Internal Energy Pressure

Coggeshall
#9

On
Conserved 2.19734 2.2009 1.94221 2.14571

Unconserved 2.1924 2.19378 1.93846 2.14514

Off
Conserved 2.19734 2.20084 1.94225 2.14571

Unconserved 2.1924 2.19372 1.9385 2.14514

Coggeshall
#11

On
Conserved 3.51083 2.60838 1.22401 2.09167

Unconserved 3.19004 0.94538 1.9552 2.495

Off
Conserved 3.76259 2.71418 1.23488 2.09128

Unconserved 3.18902 0.96388 1.95858 2.48846

Table 3: Convergence rates at time 3.0 s for key quantities

t = 3.0 s Heat Conduction Module Cell-Averages Density Velocity Internal Energy Pressure

Coggeshall
#9

On
Conserved 2.22078 2.9966 1.8986 2.17192

Unconserved 2.2165 2.28098 1.89169 2.17158

Off
Conserved 2.22078 2.29951 1.89866 2.17192

Unconserved 2.2165 2.28084 1.89176 2.17158

Coggeshall
#11

On
Conserved 2.80453 2.43544 1.86782 2.01101

Unconserved 2.65554 0.82368 2.1264 1.62433

Off
Conserved 3.1982 2.65904 1.8974 2.0056

Unconserved 2.60006 0.905 2.14088 1.60959

Table 2 shows that at time 2.0 s the convergence rate of the Coggeshall nine solution is
affected minimally by the use of the heat conduction module for both conserved and
unconserved cell-averages. However, the Coggeshall eleven solution convergence rate is
reduced by the use of the heat conduction module for both conserved and unconserved cell-
averages for the majority of the quantities. The slight reduction in convergence rate suggests that
the heat conduction module may have a negative effect on convergence. This effect is likely due

12

to the propagation of errors through the problem in space and time, caused by wall heating-like
phenomenon near the origin.

In almost all cases the convergence rate is higher when using conserved cell-averages.
Also, the convergence rates are usually second-order when using conserved cell averages. This
is likely a result of the method being more consistent with the code methods; thus, it is more
consistent with the order of accuracy. Coggeshall eleven velocity solutions with unconserved
cell-averages exhibit less than first-order convergence, while the conserved counterparts exhibit
second-order or higher rates. However, in Table 3 for Coggeshall eleven specific internal energy
solutions at time 3.0 s the conserved cell-averages converge just below second-order, but the
unconserved converge slightly above second order. The difference in convergence rates at this
time dump for the specific internal energy solutions is minimal and one can reasonably accept
that the convergence rate is still second-order for conserved averages. The only exception to the
appearance of second-order convergence for conserved averages occurs at time 2.0 s for
Coggeshall eleven specific internal energy solution. Both the higher convergence and the
second-order behavior suggest that using conserved cell-averages is the best method to analyze
convergence.

Conclusions
xRAGE displayed second-order spatial convergence for both Coggeshall nine where

𝛼 = −1, 𝛽 = 2, 𝛾 = 5/3, and 𝑘 = 2 and eleven problems where 𝛼 = −1, 𝛽 = 2, 𝑘 = 2, and
𝛾 = 12/7. Convergence analysis is best performed using conserved cell-averages for the
majority of state quantities. There is a small reduction in convergence rate for Coggeshall
solution eleven. The analysis of xRAGE convergence using Coggeshall nine and eleven
solutions extended and reinforced existing results from the Coggeshall eight solution.

This work could be refined by improving the initialization of the flow variables in
Coggeshall problem eleven near the origin. It would be especially useful for the initialization to
closely match the analytic solution when the heat conduction module is being used.
Investigation into the few flow variable convergence rates that were either far below or above
second order is necessary. Convergence analysis with respect to the time step should be done.
Also, extension of the analysis to two and three dimensions would be useful.

13

Acknowledgements
This work was performed under the auspices of the United States Department of Energy

by Los Alamos National Security, LLC, at Los Alamos National Laboratory under contract DE-
AC52-06NA25396. The authors acknowledge the support of the US Department of Energy
Advanced Strategic Computing Program Verification Project under project leader S. Doebling,
mentor S. Ramsey, and the support of the Los Alamos National Laboratory Computational
Physics Student Summer Workshop under the direction of S. Runnels. The authors thank R.C.
Hendon for valuable insights on these topics.

14

References
[1] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy, R.

Hueckstaedt, K. New, W. Oakes, D. Ranta and R. Stefan, The RAGE radiation-
hydrodynamics code, Computational Science Disc. 1, 015005, 2008.

[2] Los Alamos National Laboratory Eulerian Applications Project, "xRAGE Users Manual
(v1109.03)," LA-CP-11-00643, 2012.

[3] S. Coggeshall, "Analytic Solutions of Hydrodynamics equations," vol. A, no. 3, 1991.

[4] F. X. Timmes, M. R. Clover, J. R. Kamm and S. D. Ramsey, "On a Cell-Averaged Solution
of the Coggeshall #8 Problem," LA-UR-09-004438, 2009.

[5] R. Hendon and S. Ramsey, "Radiation Hydrodynamics Test Problems with Linear Velocity
Profiles," Los Alamos National Laboratory, 2012.

[6] R. Drake, High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental
Astrophysics, Berlin: Springer, 2006.

[7] S. Coggeshall and R. A. Axford, "Lie group invariance properties of radiation hydrodynamics
equations and their associated similarity solutions," American Institute of Physics: Physics of
Fluids, vol. 29, 1986.

[8] S. D. Ramsey, J. R. Kamm and J. H. Bolstad, "The Guderley Problem Revisited," Los
Alamos National Laboratory, 2006.

[9] D. Mihalas and B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Mineola, New
York: Dover Publications, Inc., 1984.

15

Appendices

A: The Radiation Flux Expression
Coggeshall states that “heat flux F can be represented through a radiation diffusion
approximation” [3]. The radiation diffusion approximation is an extension of Fick’s law.

Fick’s Law �⃑� = −𝐷∇𝜙

 �⃑� = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑓𝑙𝑢𝑥

𝐷 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

𝜙 = 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

Fick’s law is used in conjunction with the Stefan-Boltzmann law which states that the power of
the radiation emitted from a black-body is proportional to its temperature, T, to the fourth power
[9]. In this case 𝜙 ≡ 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 ∝ 𝑇4.

�⃑� = −𝐷∇𝑇4

At this point only the diffusion coefficient, D, remains to be rationalized. The diffusion
coefficient should have units [𝑊𝑚−2𝐾−4]. Classically the diffusion coefficient is composed of
three main parts that are then multiplied: a factor that originates from classical electrodynamics
where the radiation pressure is proportional to the internal energy density of a black-body; the
characteristic velocity of the radiation, c; and the characteristic length scale of the radiation, 𝜆, or
its mean free path in a given material. The energy and temperature units are accounted for by
use of a radiation constant, a.

𝐷 =
1
3
𝑐𝜆𝑎

(22) 𝑭��⃑ = −𝟏
𝟑
𝒄𝝀𝒂𝛁𝑻𝟒

The radiation mean free path λ, a function of density and temperature, is related to the Rosseland
mean opacity, 𝜅𝑣 [9], and the material density, ρ.

 𝜆 = (𝜅𝑣𝜌)−1

The Rosseland mean opacity is also a function of density and temperature. A power-law fit of it
in these variables is then assumed yielding the following. 𝛼 and 𝛽 were determined
experimentally [7].

(23) 𝜆(𝜌,𝑇) = 𝜆0𝜌𝛼𝑇𝛽

16

Coggeshall uses (22) and (23) to obtain a form analogous to Fourier’s law in one dimensional
spherical coordinates [3].

�⃑� = −
1
3
𝑐𝜆𝑎

𝜕
𝜕r
𝑇4

If the problem is spherically symmetric then the equation only has radial variance.

�⃑� = −
4
3
𝑐𝜆𝛼𝑇3

𝜕𝑇
𝜕r
�̂�

Otherwise direction must be retained.

�⃑� = −
4
3
𝑐𝜆𝛼𝑇3∇𝑇

The prefactors can be combined to obtain a form like Fourier’s law where 𝐾(𝜌,𝑇) is the
conductivity of the material.

�⃑� = −𝐾(𝜌,𝑇)∇𝑇

17

B: Heat Conduction Invariance
The Coggeshall eight solution for a spherical geometry, α=-1, β=2, and γ=5/3 has been stated to
be independent of conduction in literature [4], “The heat conduction is such that the area-
weighted flux on each cell face is equal, that is, conduction moves as much energy into a cell as
it removes.” A discussion of this feature of the Coggeshall eight solution follows.

To prove the statement, the area-weighted heat flux through a cell face in spherical symmetry
must be shown to equal to the area-weighted heat flux outward through the opposing cell face.
This implies that the heat deposited by conduction to the cell through the one face is removed
through the other face by conduction at a particular instance in time, shown in Figure 1.

Figure 3: Area-weighted heat flux into and out of a cell is equal

Show that 𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡.

𝑄 ≡ ℎ𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑒𝑑

𝐴 ≡ 𝐶𝑒𝑙𝑙 𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝐹 ≡ ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 =
𝑄
𝐴

𝐹𝐴 ≡ 𝑎𝑟𝑒𝑎 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑓𝑙𝑢𝑥 = 𝑄

𝐹𝑖𝑛𝐴𝑖𝑛 = 𝑄𝑖𝑛 = 𝑄𝑜𝑢𝑡 = 𝐹𝑜𝑢𝑡𝐴𝑜𝑢𝑡

For spherical symmetry 𝐴 = 4𝜋𝑟2.

𝐹𝑖𝑛𝑟𝑖𝑛2 = 𝐹𝑜𝑢𝑡𝑟𝑜𝑢𝑡2

𝐹 = −�cλ
3
� 𝛻𝑎𝑇4 [3]

𝑟𝑖𝑛2 𝜆𝑖𝑛∇𝑇𝑖𝑛4 = 𝑟𝑜𝑢𝑡2 𝜆𝑜𝑢𝑡∇𝑇𝑜𝑢𝑡4

Cell

dQi

dQo

18

 𝜆(𝜌,𝑇) = 𝜆0𝜌𝛼𝑇𝛽 [3]

𝜆(𝜌,𝑇) = 𝜆0𝜌−1𝑇2

𝜌(𝑟, 𝑡) = 𝜌0
𝑟
1
7

𝑡
22
7

 𝑇(𝑟, 𝑡) = 𝑇0(𝑟−
1
7)(𝑡−

13
7) [4]

𝜆 = 𝜆0 (𝜌0−1𝑟
−17𝑡

22
7) �𝑇02𝑟

−27𝑡
13
7 �

∇𝑇4 = −
4
7
𝑇04𝑟

−117 𝑡−
13
7

𝑟𝑖𝑛2 𝜆0(𝜌0−1𝑟𝑖𝑛
−17𝑡

22
7)�𝑇02𝑟𝑖𝑛

−27𝑡
13
7 � �−

4
7
𝑇04𝑟𝑖𝑛

−117 𝑡−
13
7 �

= 𝑟𝑜𝑢𝑡2 𝜆0 (𝜌0−1𝑟𝑜𝑢𝑡
−17𝑡

22
7) �𝑇02𝑟𝑜𝑢𝑡

−27𝑡
13
7 � �−

4
7
𝑇04𝑟𝑜𝑢𝑡

−117 𝑡−
13
7 �

𝑟𝑖𝑛2 �𝑟𝑖𝑛
−17� �𝑟𝑖𝑛

−27� �𝑟𝑖𝑛
−117 � = 𝑟𝑜𝑢𝑡2 �𝑟𝑜𝑢𝑡

−17� �𝑟𝑜𝑢𝑡
−27� �𝑟𝑜𝑢𝑡

−117 �

1 = 1

The statement is true.

This method was also used to show that both Coggeshall solutions #9 and #11 are invariant to
heat conduction.

19

C: Initialization Discrepancies in xRAGE
There are three options for initialization parameters for the xRAGE code for material regions
(computational zones):

1. rhoreg and siereg (Density and Specific Internal Energy)
2. rhoreg and tevreg (Density and Temperature)
3. prsreg and tevreg (Pressure and Temperature)

All initializations of xRAGE also require the initialization of velocity. xRAGE then uses
equations of state and the provided parameters to calculate the rest the initialization values.
Although the input values are provided by the user, it has been observed that xRAGE uses the
equation of state to recalculate temperature and pressure when given as initialization parameters.
The recalculated values do not exactly match the original input values. The order of accuracy is
of order 10-10. Although the difference is very small, it does create errors in the simulation.

The xRAGE code manual [2] recognizes and discusses an analytic equation of state
implementation error that may be responsible for these phenomena.

20

D: Coggeshall Solution 9

Viewgraph Norms for Conserved Cell-Averages with and without the Heat
Conduction Module Implemented

Figure 4: Viewgraph norm of the xRAGE specific internal energy solution with and without the heat conduction module
implemented for conserved cell-average values at t=3.0 s

Figure 5: Viewgraph norm of the xRAGE pressure solution with and without the heat conduction module implemented
for conserved cell-average values at t=3.0 s

21

Figure 6: Viewgraph norm of the xRAGE density solution with and without the heat conduction module implemented for
conserved cell-average values at t=3.0 s

Figure 7: Viewgraph norm of the xRAGE velocity solution with and without the heat conduction module implemented for
conserved cell-average values at t=3.0 s

22

Viewgraph Norms for Unconserved Cell-Averages with and without the Heat
Conduction Module Implemented

Figure 8: Viewgraph norm of the xRAGE specific internal energy solution with and without the heat conduction module
implemented for unconserved cell-average values at t=3.0 s

Figure 9: Viewgraph norm of the xRAGE pressure solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

23

Figure 10: Viewgraph norm of the xRAGE density solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

Figure 11: Viewgraph norm of the xRAGE velocity solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

24

Viewgraph Norms with the Heat Conduction Module Not Implemented with and
without Conserved Cell-Averages

Figure 12: Viewgraph norm of the xRAGE pressure solution with and without conserved cell-averages with the heat
conduction module not implemented at t=3.0 s

Figure 13: Viewgraph norm of the xRAGE density solution with and without conserved cell-averages with the heat
conduction module not implemented at t=3.0 s

25

Figure 14: Viewgraph norm of the xRAGE velocity solution with and without conserved cell-averages with the heat
conduction module not implemented at t=3.0 s

Figure 15: Viewgraph norm of the xRAGE specific internal energy solution with and without conserved cell-averages
with the heat conduction module not implemented at t=3.0 s

26

Viewgraph Norms with the Heat Conduction Module Implemented with and without
Conserved Cell-Averages

Figure 16: Viewgraph norm of the xRAGE specific internal energy solution with and without conserved cell-averages
with the heat conduction module implemented at t=3.0 s

Figure 17: Viewgraph norm of the xRAGE pressure solution with and without conserved cell-averages with the heat
conduction module implemented at t=3.0 s

27

Figure 18: Viewgraph norm of the xRAGE density solution with and without conserved cell-averages with the heat
conduction module implemented at t=3.0 s

Figure 19: Viewgraph norm of the xRAGE velocity solution with and without conserved cell-averages with the heat
conduction module implemented at t=3.0 s

28

Conserved, Heat Conduction On

Figure 20: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 9 solution
with conserved values and the heat conduction module implemented

Figure 21: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 9 solution
with conserved values and the heat conduction module implemented

29

Figure 22: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 9 solution
with conserved values and the heat conduction module implemented

Figure 23: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with conserved values and the heat conduction module implemented

30

Figure 24: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 9
solution with conserved values and the heat conduction module implemented

Figure 25: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 9
solution with conserved values and the heat conduction module implemented

31

Figure 26: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 9
solution with conserved values and the heat conduction module implemented

Figure 27: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with conserved values and the heat conduction module implemented

32

 Non-Conserved, Heat Conduction On

Figure 28: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 9 solution
with non-conserved values and the heat conduction module implemented

 Figure 29: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 9 solution
with non-conserved values and the heat conduction module implemented

33

Figure 30: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 9 solution
with non-conserved values and the heat conduction module implemented

Figure 31: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with non-conserved values and the heat conduction module implemented

34

Figure 32: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 9
solution with non-conserved values and the heat conduction module implemented

Figure 33: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 9
solution with non-conserved values and the heat conduction module implemented

35

Figure 34: Log-log error plot with a fitted curve as a function of cell size for xRAGE veloctiy using the Coggeshall 9
solution with non-conserved values and the heat conduction module implemented

Figure 35: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with non-conserved values and the heat conduction module implemented

36

Conserved, Heat Conduction Off

 Figure 36: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 9 solution
with conserved values and the heat conduction module not implemented

Figure 37: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 9 solution
with conserved values and the heat conduction module not implemented

37

Figure 38: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 9 solution
with conserved values and the heat conduction module not implemented

Figure 39: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with conserved values and the heat conduction module not implemented

38

Figure 40: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 9
solution with conserved values and the heat conduction module not implemented

Figure 41: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 9
solution with conserved values and the heat conduction module not implemented

39

Figure 42: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 9
solution with conserved values and the heat conduction module not implemented

Figure 43: Log-log error plot with a fitted curve as a function of cell size for xRAGE energy using the Coggeshall 9
solution with conserved values and the heat conduction module not implemented

40

Non-Conserved, Heat Conduction Off

 Figure 44: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 9 solution
with non-conserved values and the heat conduction module not implemented

Figure 45: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 9 solution
with non-conserved values and the heat conduction module not implemented

41

Figure 46: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 9 solution
with non-conserved values and the heat conduction module not implemented

Figure 47: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with non-conserved values and the heat conduction module not implemented

42

Figure 48: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 9
solution with non-conserved values and the heat conduction module not implemented

Figure 49: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 9
solution with non-conserved values and the heat conduction module not implemented

43

 53

Figure 50: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 9
solution with non-conserved values and the heat conduction module not implemented

Figure 51: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 9 solution with non-conserved values and the heat conduction module not implemented

44

E: Coggeshall Solution 11

Viewgraph Norms for Conserved Cell-Averages with and without the Heat
Conduction Module Implemented

Figure 52: Viewgraph norm of the xRAGE pressure solution with and without the heat conduction module implemented
for conserved cell-average values at t=3.0 s

Figure 53: Viewgraph norm of the xRAGE specific internal energy solution with and without the heat conduction module
implemented for conserved cell-average values at t=3.0 s

45

Figure 54: Viewgraph norm of the xRAGE density solution with and without the heat conduction module implemented
for conserved cell-average values at t=3.0 s

Figure 55: Viewgraph norm of the xRAGE velocity solution with and without the heat conduction module implemented
for conserved cell-average values at t=3.0 s

46

Viewgraph Norms for Unconserved Cell-Averages with and without the Heat
Conduction Module Implemented

Figure 56: Viewgraph norm of the xRAGE velocity solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

Figure 57: Viewgraph norm of the xRAGE pressure solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

47

Figure 58: Viewgraph norm of the xRAGE density solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

Figure 59: Viewgraph norm of the xRAGE velocity solution with and without the heat conduction module implemented
for unconserved cell-average values at t=3.0 s

48

Viewgraph Norms with the Heat Conduction Module Not Implemented with and
without Conserved Cell-Averages

Figure 60: Viewgraph norm of the xRAGE specific internal energy solution with and without conserved cell-averages
with the heat conduction module not implemented at t=3.0 s

Figure 61: Viewgraph norm of the xRAGE pressure solution with and without conserved cell-averages with the heat
conduction module not implemented at t=3.0 s

49

Figure 62: Viewgraph norm of the xRAGE density solution with and without conserved cell-averages with the heat
conduction module not implemented at t=3.0 s

Figure 63: Viewgraph norm of the xRAGE velocity solution with and without conserved cell-averages with the heat
conduction module not implemented at t=3.0 s

50

Viewgraph Norms with the Heat Conduction Module Implemented with and without
Conserved Cell-Averages

Figure 64: Viewgraph norm of the xRAGE specific internal energy solution with and without conserved cell-averages
with the heat conduction module implemented at t=3.0 s

Figure 65: Viewgraph norm of the xRAGE pressure solution with and without conserved cell-averages with the heat
conduction module implemented at t=3.0 s

51

Figure 66: Viewgraph norm of the xRAGE density solution with and without conserved cell-averages with the heat
conduction module implemented at t=3.0 s

Figure 67: Viewgraph norm of the xRAGE velocity solution with and without conserved cell-averages with the heat
conduction module implemented at t=3.0 s

52

Conserved, Heat Conduction On

Figure 68: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 11 solution

with conserved values and the heat conduction module implemented

Figure 69: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 11 solution
with conserved values and the heat conduction module implemented

53

Figure 70: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with conserved values and the heat conduction module implemented

Figure 71: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 11 solution
with conserved values and the heat conduction module implemented

54

Figure 72: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 11
solution with conserved values and the heat conduction module implemented

Figure 73: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 11
solution with conserved values and the heat conduction module implemented

55

Figure 74: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with conserved values and the heat conduction module implemented

Figure 75: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 11
solution with conserved values and the heat conduction module implemented

56

Non-conserved, Heat Conduction On

Figure 76: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 11 solution
with non-conserved values and the heat conduction module implemented

Figure 77: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 11 solution
with non-conserved values and the heat conduction module implemented

57

Figure 78: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with non-conserved values and the heat conduction module implemented

Figure 79: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 11 solution
with non-conserved values and the heat conduction module implemented

58

Figure 80: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 11
solution with non-conserved values and the heat conduction module implemented

Figure 81: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 11
solution with non-onserved values and the heat conduction module implemented

59

Figure 82: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with non-conserved values and the heat conduction module implemented

Figure 83: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 11
solution with non-conserved values and the heat conduction module implemented

60

Conserved, Heat Conduction Off

Figure 84: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 11 solution
with conserved values and the heat conduction module not implemented

Figure 85: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 11 solution
with conserved values and the heat conduction module not implemented

61

Figure 86: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with conserved values and the heat conduction module not implemented

Figure 87: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 11 solution
with conserved values and the heat conduction module not implemented

62

Figure 88: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 11
solution with conserved values and the heat conduction module not implemented

Figure 89: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 11
solution with conserved values and the heat conduction module not implemented

63

Figure 90: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with conserved values and the heat conduction module not implemented

Figure 91: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 11
solution with conserved values and the heat conduction module not implemented

64

Non-conserved, Heat Conduction Off

Figure 92: Log-log error plot for all times as a function of cell size for xRAGE pressure using the Coggeshall 11 solution
with non-conserved values and the heat conduction module not implemented

Figure 93: Log-log error plot for all times as a function of cell size for xRAGE density using the Coggeshall 11 solution
with non-conserved values and the heat conduction module not implemented

65

Figure 94: Log-log error plot for all times as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with non-conserved values and the heat conduction module not implemented

Figure 95: Log-log error plot for all times as a function of cell size for xRAGE velocity using the Coggeshall 11 solution
with non-conserved values and the heat conduction module not implemented

66

Figure 96: Log-log error plot with a fitted curve as a function of cell size for xRAGE pressure using the Coggeshall 11
solution with non-conserved values and the heat conduction module not implemented

Figure 97: Log-log error plot with a fitted curve as a function of cell size for xRAGE density using the Coggeshall 11
solution with non-conserved values and the heat conduction module not implemented

67

Figure 98: Log-log error plot with a fitted curve as a function of cell size for xRAGE specific internal energy using the
Coggeshall 11 solution with non-conserved values and the heat conduction module not implemented

Figure 99: Log-log error plot with a fitted curve as a function of cell size for xRAGE velocity using the Coggeshall 11
solution with non-conserved values and the heat conduction module not implemented

2012 Computational Physics Student Summer Workshop: Final Reports

EMP Simulations

(Heidi Tierney, mentor)

Electromagnetic Pulse Simulations
(EMP)-Swarm Electron Time Delay in

Thunderstorm Environment

Elise Pusateri and Evan Snyder
Mentor: Heidi Tierney

Summer 2012 LANL Computational Physics Workshop

1 Introduction

Our work in the 2012 Computational Physics Workshop included the devel-
opment of a swarm model for use in both lightning physics and the larger
electromagnetic pulse (EMP) project. This model is designed to analyze the
evolution of a swarm of electrons that is created by photoelectron ionization
of air and Townsend impact ionization at a given air density. Here, the re-
sults are presented for a mid-thunderstorm altitude of 5 km. The code uses
an adaptive timestep and solves a system of coupled differential equations for
electric field, electron temperature, swarm electron number density, and drift
velocity. For lightning, the purpose of this work is two fold. First, we are
interested in the amount of time it takes for the newly generated electrons
equilibrate to the ambient electric field and pressure to reach a characteristic
electron temperature that defines a swarm. In this context a swarm means
that the electrons are in thermodynamic equilibrium with themselves, but
not necessarily with the background. Many models treat the conduction or
swarm electrons as responding instantaneously to the environment. In re-
ality, the electron swarm has a time dependent characteristic temperature.
Second, in runaway breakdown theory, the ionization produced by photoelec-
trons is often overlooked. Here we calculate this contribution to the swarm
electron density and discuss the possible implications for lightning initiation.

1

A theory of lightning initiation involves high energy seed electrons (about
1 MeV) that come about from cosmic rays.[5] If these high energy electrons
enter a region of the atmosphere that has a sufficient electric field over a
distance of about 1 km or more, measurable enhancements in background
radiation take place. The high energy electrons interact with surrounding
air molecules to create Bremsstrahlung (X-ray) radiation, positive and nega-
tive ions, conduction electrons [9], and possibly further high energy electrons
through the runaway breakdown process. X-ray production is highly cor-
related with the strength of the large scale thunderstorm electric field.[3]
Figure 1 shows this measured X-ray intensity. X-ray intensity lasted for a
longer time period (about one minute) compared to the time periods of any
lightning flash (< 1sec). McCarthy et al., [1985] discusses two scenarios in
which X-ray measurements a factor of one thousand above background levels
can be produced. One possibility is that the energetic electrons are gain-
ing enough energy from the thunderstorm electric field to compensate for
and enhance Bremsstrahlung losses. The other possibility is that runaway
breakdown is taking place and the newly generated high energy electrons are
also gaining energy from the field and emitting Bremsstrahlung X-rays. Our
model only requires the X-ray measurements to inform us about the photo-
electron source rather than detailed knowledge of the processes that create
the X-ray enhancements prior to a lightning strike.

The photoelectron number density per second is created by the x ray
flux. The photoelectrons then experience a frictional drag force as they
traverse through a thundercloud, which is proportional to Zln(E0), where Z
is the atomic number of the molecule that the electron interacts with, and
E0 is the initial energy of the electron. This process varies with energy and
atmospheric height as can be seen in Figure 2.[2] Figure 2 also shows two
electric field strengths, including the breakdown threshold electric field for
laboratory sparks and a typical thunderstorm field. The dynamical friction
force is a minimum for electrons of energy near 1 MeV. The high-energy
electron distribution tends to equilibrate to this value since those that gain
energy from the field will then lose more energy from the friction force. Those
electrons that fall below the minimum energy to gain more energy from the E
field than they lose in creating ion pairs will gradually add to the low energy,
conduction, electron group.

If the electrons experience a high enough electric field (whether it be
external or self-consistent), then the electrons can gain more energy from
the field than they lose from the frictional and radiative forces. When this

2

Figure 1: X-ray intensity observed in a measurement by Eack et al [1996].
It should be noted that the low X-ray intensity near 3.9 km has a spectrum
similar to that of the background that was observed before and after the
event.[4]

3

Figure 2: Collisional energy loss and electric field versus fast electron energy
in air.

occurs, Bremsstrahlung radiation is increased and more secondary electrons
can be ejected. As an example, radiative energy losses and collision energy
losses versus electron energy with no electric field present can be seen in
Figure 3.[2] This phenomenon is referred to as Runaway Breakdown.

Runaway breakdown will stop when the thunderstorm electric field is de-
pleted. This can happen because all the new electrons that join the swarm
increase the conductivity of the thunderstorm region in which runaway break-
down is taking place or because a lightning flash depletes the thunderstorm
charge. The conduction electrons also attach to molecules, reducing the con-
ductivity. We account for attachment in this paper.

In this paper, we explore four coupled ODE’s formed by swarm theory
and the effects they have on lightning initiation and propagation in the low
energy regime from about (1-10) keV. Swarm theory assigns a mean tem-
perature to the electrons and relates their drift velocity to the electric field
and the energy transfer and momentum transfer collision frequencies.[7] Of
primary interest are the conduction electrons and the resultant conduction
current. The primary current comes from Compton electrons and photoelec-
trons created in the processes described above. We acknowledge the effects
that high energy Compton electrons have on the associated equations, but

4

Figure 3: Energy loss versus fast electron energy, The loss mechanism are
collisional (black line), radiative (red line), and total (dashed black line).
There is no electric field included.

5

we ignore them for the purpose of this paper for several reasons. Mainly,
we are testing the importance of the role of the photoelectrons in produc-
ing conduction electrons in a thunderstorm environment. This contribution
is overlooked in runaway breakdown theory. These photoelectrons are also
assumed to be monoenergetic at 1 keV.

In addition, we also make the assumption that background photoelectron
flux is isotropic at 5 km altitude. Our evaluation is limited in this assumption
but further experimental research in this area would greatly help to validate
our model.

2 Analysis

In this section, we review the four, coupled, ordinary differential equations
to be modeled using a variant of a 4th order Runge-Kutta method called the
Rosenbrock method. Kap and Rentrop produced the first practical imple-
mentation of these methods, so these methods are also called Kaps-Rentrop
methods.[10] These are used to solve a stiff set of equations, which refers to
the case where there are very different scales of the independent variable on
which the dependent variable is changing. An adaptive timestep is employed,
which is calculated based on an error between test solutions of high and low
order. This is an embedded approach. The rapidly changing timescale is
represented physically in a lightning situation.

Our first equation describes the change in the electric field, E, as a func-
tion of time. We have

dE

dt
= −4πc[Jp +

e

c
Nevd] (1)

where Jp is the primary current density, which contains ”free” Compton
and photoelectrons. More importantly, for this analysis, Ne is the number
of low energy electrons created from the ionization of the air by the primary
photoelectrons and vd is the average drift velocity of the low energy electrons
in the thunderstorm electric field. Note that the low energy electrons have
their motion characterized by two components. One is a relatively slow drift
in the applied electric field and the other is a random thermal motion that is
characterized by the electron temperature. The primary electrons lose about
86 eV per ionization event, causing secondary electrons with sufficient energy
to produce additional ionization. On average, one ion pair is created for each

6

34 eV of energy lost by the primary electrons.
We assume that Jp is uniformly distributed with respect to the volume

of interest so equation (1) reduces to

dE

dt
= −4πeNevd. (2)

Both Ne and vd are functions of time so, to determine these variables,
electron swarm theory is applied, which assigns a mean temperature to the
electrons and relates their drift velocity to the electric field and various colli-
sion frequencies. [7] The solution of Equation 2 is an exponentially decaying
electric field where the decay time constant is inversely proportional to the
conductivity of the medium.

This includes, first, the rate of change of electron number density, which
is a function of source terms and an attachment loss term defined by:

dNe

dt
= S1(t) + C1(U)Ne − ηNe (3)

Here, S1(t) [electrons/cm3sec] is the rate of production of swarm elec-
trons, C1(U) [sec−1] is the cascading rate, and η [sec−1] is the electron at-
tachment rate.

S1(t) is defined as

S1(t) = σvNairNp (4)

where Nair is the number density of air particles in the atmosphere at the
height of the lightning strike (5km). Np is the number density of primary
photoelectrons which ranges from (5 − 8)x104cm−3[6] and is approximated
as (6.5)x104cm−3 here. σv is the rate coefficient for the ionization of air by
fast electrons. This is represented graphically in Figure 4 as a function of
primary electron energy.

The primary electron energy in this analysis is that of the photoelectrons
which is on the order of 1 keV. This means that we use a rate coefficient of
about 8x10−8 cm3

sec
.

C1 is the rate at which energetic swarm electrons create further electrons
by ionization’s and is just the drift velocity times the Townsend Coefficient.
This implies that C1(U)Ne is the rate at which low energy electrons produce
further electrons by cascading.[7] Townsend impact ionization is the ioniza-
tion in a swarm of low energy electrons. The characteristic energy is on the

7

Figure 4: Rate coefficient for the creation of ion pairs, σv, as a function of
fast electron energy, w [eV].[7]

order of 1 eV. As the electron temperature of the swarm increases, the elec-
trons in the high energy tail of the distribution are more able to free more
electrons from the surrounding air and the rate increases. The fit for the
behavior of this phenomena with respect to energy can be seen below.

C1

Nair

=
3.3x10−14U8.7

(1 + 5.87U5.5)(1 + 1.29x10−3)
+ 3.26x10−7e−44.08/U (5)

This is also displayed pictorially in Figure 5.
The other important aspect of Equation 3 is the two and three body

attachment rate of free electrons, η. This is dependent on the water vapor
content which will can be relatively high (3-4 percent) inside a cloud at 5km.
This attachment rate versus altitude can be seen in Figure 6.

The two and three body attachment is also dependent on the time varying
electric field seen in Equation 2 and is taken into account in the stiff code.

8

Figure 5: Cascading rate, C1, as a function of Internal Swarm Energy, U. [7]

The differential energy change formula, derived from energy conservation,
is

dU

dt
=

2

3

e

1.6x10−12
vdE − vw[U − U0] + S2(t) (6)

where U0 [eV] is the ambient air temperature (1
40

eV). While we are not
yet taking into consideration the heating of the background medium, it can
be seen that as the air temperature increases to the electron temperature,
this loss term goes to zero. S2 [eV/sec] is the rate at which energy is added
to the swarm. S2 is defined as

S2(t) =
2

3
(

w̄

Ne

S1 − wcC1) (7)

w̄ is the average energy of the ionization electrons produced by the pho-
toelectrons, which is about 50 eV, and wc is the ionization potential of air,
which is about 14 eV.

The energy transfer collision frequency, νw, comes into play when we
consider Equation 6 which encompasses the energy term. This collision fre-
quency is based on experimental data and is a function of the swarm internal
energy U. The expression used here is [7]

9

Attachment Rate (2- and 3-Body)

105 106 107 108

Attachment Rate (1/sec)

0

10

20

30

40

A
lti

tu
de

 (k
m

)

Figure 6: Attachment Rate as a function of altitude. The electric fields
here is constant at 538 kV/m, which is the initial Electric field used in this
analysis.

νw

N0

= 1.0x10−11 +
A1U

3.22

(1 + A2U9.15).307
+

B1U
5.22

(1 + B2U4.74).965
(8)

The next coupled PDE comes about by applying Newton’s law relating
rate of change of momentum to the applied force. This is the change in the
swarm drift velocity in time.[7] The drift velocity will increase because of
the applied electric field and will decrease in time as the electrons experience
collisions. The collisions that reduce the drift velocity are characterized by
a momentum transfer collision frequency.

dvd

dt
=

e

m
E − νm(U)vd (9)

Here we have another collision frequency, the momentum transfer collision
frequency, νm, which is defined empirically as [7]

νm

N0

=
1.25x10−7U .935

(1 + 1.26U1.67).373
(10)

Both the energy and momentum transfer collision frequencies are plotted
in Figures 7 and 8, respectively, as a function of U.

To summarize, the differential equations to be evaluated here are Equa-
tions 2, 3, 6, 9. Finding the parameters in these equations helps us to find

10

Figure 7: The energy transfer collision frequency, νw, as a function of Internal
Swarm Energy, U.[7]

Figure 8: The momentum exchange collision frequency, νm, as a function of
Internal Swarm Energy, U.[7]

11

other values of interest including the conductivity and the number of positive
and negative ions created due to the creation of conduction electrons. The
number of positive ions is equal to the number of conduction electrons, Ne,
and the number of negative ions is proportional to the attachment rate, η.

The conductivity [sec−1] is defined as

σ = eµeNe =
e2Ne

meνm

(11)

µe [cm2

statV ∗s] is the electron mobility and is defined as

µe =
e

meνm

(12)

Calculating these parameters can better help us to understand how elec-
tron swarm effects thunderstorms by showing how it changes the surrounding
in this type of environment. The results form this analysis are summarized
in the following sections.

3 Results

In this section, the results found by using the stiff equation solver[10] are
presented graphically. Fist we have E, Ne, U , and vd, as a function of time.

From this graph, it is clear that the drift velocity is heavily dependent
on the electric field, and will decrease to zero. This is because the number
of low density electrons is increasing by 6 orders of magnitude, which will
eventually decrease the electric field to zero.

Also, the internal energy initially increases. Assuming that the photo-
electrons are at a constant 1 keV, this means that the ratio of S1, or primary
photoelectrons, to Ne is higher than the energy loss rate of cascading elec-
trons. Since the electric field in this region of increase is constant, this causes
a local minimum in vd where this local maximum is in U. Eventually Ne will
overtake the S1 since, in our case, S1 is constant.

In order to validate these results, we compare them to the results of
[Alietal, 1985] which can be seen in Figure10.

Our results are very close to the experimental results but are systemat-
ically underestimated, meaning some of our assumption must be inacurate.
When the electric field decays, the Ali plot is not applicable. It should be
noted that we use an electric field of 14.47 [V/cm/Torr] or 538 [kV/m/atm]

12

10-1810-1610-1410-1210-10 10-8 10-6 10-4

Time [s]

102

104

106

108

1010

N e [
#/c

m3]

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

10-1

100

101

102

103

U
[eV

]

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

106

107

v d [
cm

/s]
10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

100

101

102

E
[st

atV
/cm

]

Figure 9: Results from solving the coupled Equations 2, 3, 6, 9. These
variables are plotted with respect to time [seconds].

for our analysis of the other parameters, which was found previously by
Tierney et al. [2005]. As stated above, it is important in our study to know
the equilibrium times for the electric field. Table 1.

Another area of interest is the conductivity which is found by using Equa-
tion 11. This is shown in Figure 11.

The conductivity is dependent primarily on the Ne as can be seen by
comparing Figure 11 with the Ne versus time plot in Figure 9. The value
for σ does also depend on νm but, since U has a much smaller change with
respect to time compared to Ne, νm does not vary as greatly with time. Our

Electric Field Strength [statV/cm] Equilibrium Time [ns]
8.97 0.25
17.946 0.1
35.89 0.08
53.837 0.05

Table 1: Equilibrium times [ns] for various electric field strengths found by
implemeting our stiff code

13

Equilibrium Electron Temp Values vs E-Field Strength

0 10 20 30 40 50
E/p [V/cm/Torr]

0.5

1.0

1.5

2.0

2.5

U
 [e

V
]

Figure 10: The internal energy of the swarm with respect to applied electric
field.[1] The green diamonds represent the U that is obtained when various
electric field strengths are used. The electric field in for the majority of this
analysis is 14.47 [V/cm/Torr].

results indicate that the conductivity increases by eight orders of magnitude
in a microsecond using our assumptions and initial conditions. Over most of
this time period, the electric field is flat, therefore the conduction current, j,
will depend on σ (j =σE) until the electric field starts its rapid decent.

The final parameter of concern is the number of negative ions, N−, which
are created by 2 and 3-body attachment. This can be seen in Figure 12.

This result is very interesting because it means that the surrounding air
changes in composition in a thunderstorm environment. This allows the
electric field to decrease during a lightning event since both the conductivity
and the environment produce a better condition for lightning initiation.

Since the energy of the photoelectrons was assumed to be a constant 1
keV, it is of interest to see what happens to the parameters when we increase
the energy to 10 keV and 100 keV. Figure 13 shows the effect on E, Ne,
vd, and U . Here, the values at 1 keV are represented by a green line, the
values at 10 keV are represented by a red line, and the values at 100 keV are
represented by a blue line.

Since increasing the energy decreases the ion pair creation rate coefficient
by about one-half what is was at 1 keV (See Figure 4)then we would expect
Ne to decreasue by a factor of one-half at 10 keV. (See Equations 3 and 4)
this is what we see when referring to Figure 13.

14

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

10-2

100

102

104

106

C
on

du
ct

iv
ity

r [
s-1]

Figure 11: The conductivity versus time found from the results of solving
the coupled Equations 2, 3, 6, 9.

Although the change of energy only seems to effect the results slightly,
it is interesting to note that the electric field does start decaying at a later
time, and that the conduction electrons maintain their internal energy and
drift velocity longer for both cases.

In referring to Figures 14 and 15,we can see how changing the photoelec-
tron energy affects the conductivity and number of negative ions created.

4 Conclusions

We have developed a model for investigating the time evolution of an elec-
tron swarm in the Earth’s atmosphere. We found that for photoelectric and
Townsend sources, the electron swarm will reach an equilibrium value on the
order of .025 − 0.3x10−9 seconds (decreasing with increasing electric field)
for thunderstorm conditions. Our other finding is that the electron density
can only attain a value of about 1010 per cm3 before rapidly decreasing the
ambient electric field. This is in agreement with the value found by[11].

The time lag of ionization is of interest for EMP theory since the decay of
an EMP is governed by the conductivity of the background medium. Getting
the correct EMP amplitude is important for our verification and validation

15

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

10-10

10-5

100

105

1010

1015

Nu
mb

er
 D

en
sit

y o
f N

eg
ati

ve
 Io

ns
N- [#

/cm
3]

Figure 12: The number of negative ions produced versus time.

effort. The detailed characteristics of how swarms and electric fields evolve is
of importance to lightning initiation. Here we have only considered an ener-
getic source of electrons in a relatively cold background medium. If heating
of the air takes place, such as in a return stroke process of lightning, the
chemistry of the background becomes very complex and vitally important.

We have considered the creation of negative ions as a means of decreasing
the ionization potential of air. Our experience with laboratory discharges
shows that thunderstorm electric fields are always too low by a factor of
about ten to breakdown air. One way to overcome this is to change the
medium that the discharge is developing in. We investigated whether the
creation of negative ions in air that is impacted by photoelectrons could
result in a significant change of the characteristic ionization potential of air.
The ionization potential for neutral air is about 13.6eV, while the ionization
potential for a negative ion is on the order of 1eV. Our results show that the
maximum number density of negative ions that can be produced is about 1010

per cm3. The density of air at 5 km is on the order of 1019 per cm3. Thus the
ionization fraction is too low to have a significant effect on the characteristic
ionization potential of air. The limiting factor is the conductivity of air
that is produced. This conductivity will act to screen and reduce the local
electric field. When the electric field is gone, runaway breakdown processes

16

10-1810-1610-1410-1210-10 10-8 10-6 10-4

Time [s]

102

104

106

108

1010

N e [
#/c

m3]

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

10-1

100

101

102

103

U
[eV

]

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

106

107

v d [
cm

/s]

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

100

101

102

E
[st

atV
/cm

]

Figure 13: Results from solving the coupled Equations 2, 3, 6, 9. These
variables are plotted with respect to time [seconds]. Here, the values at 1
keV are represented by a green line, the values at 10 keV are represented by
a red line, and the values at 100 keV are represented by a blue line.

cannot occur. However, if a runaway avalanche was taking place and then
the electric field was suddenly gone, all of the energy would be deposited
quickly in the form of low energy electrons. Depending on the size of the
region of deposition and the amount of energy contained in the avalanche,
a vary large number of low energy electrons would be produced that could
then attach to air and have a more significant effect.

The results gained from this analysis may have a substantial impact on
how we view lightning initiation. It is clear that the background environment
changes a lot, and the conductivity is still increasing even though the electric
field is decreasing. Therefore, there is still a reason for lightning event when
the electric field is below the breakeven electric field.

In order to improve this analysis, there would need the be improvements
on the approximations made, such as that the photoelectrons are also as-
sumed to have discrete energies and that background photoelectron flux is
isotropic at 5 km altitude. There is going to be a spectrum of photoelectron
energies since bremsstrahlung radiation has a spectrum for probabilities of
energies, rather than just a discrete value. Also, the x rays creating the

17

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

10-2

100

102

104

106

C
on

du
ct

iv
ity

r [
s-1]

Figure 14: The conductivity versus time for various photoelectron energies.
Here, the values at 1 keV are represented by a green line, the values at 10
keV are represented by a red line, and the values at 100 keV are represented
by a blue line.

photoelectrons are of importance. Their presence would likely photo-detach
any electrons that were able to attach to air. This could be handled in a
more self-consistent manner than was possible in the ten-week duration of
the workshop.

Overall, we have created an important capability for the EMP project.
With further improvements to the swarm model that was developed we can
better understand EMP and lightning phenomena.

References

[1] Ali, A.W., Intense and Short Pulse Electric Field (DC and Microwave)
Air Breakdown Parameters, pp. 30, Naval Research Laboratory, Wash-
ington DC, 1986.

[2] Berger, Martin J., and Stephen M. Seltzer. TABLES OF ENERGY
LOSSES AND RANGES OF ELECTRONS AND POSITRONS. Rep.
National Aeronautics and Space Administration, 1964.

18

10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4

Time [s]

10-10

10-5

100

105

1010

1015

Nu
mb

er
 D

en
sit

y o
f N

eg
ati

ve
 Io

ns
N- [#

/cm
3]

Figure 15: The number of negative ions produced versus time for various
photoelectron energies. Here, the values at 1 keV are represented by a green
line, the values at 10 keV are represented by a red line, and the values at 100
keV are represented by a blue line.

[3] Eack, Kenneth B., William H. Beasley, W. David Rust, Thomas C.
Marshall, and Maribeth Stolzenburg. ”Initial Results from Simultaneous
Observation of X Rays and Electric Fields in a Thunderstorm.” Journal
of Geophysical Research 101 (1996): 29637-9640.

[4] Eack, K. B., Observations of x-rays produced by strong electric fields in
thunderstorms, PhD Thesis, Norman, OK, 1997.

[5] Gurevich, A. V., and G. M. Milikh. ”Generation of X-rays Due to Multi-
ple Runaway Breakdown inside Thunderclouds.” Physics Letters A 262
(1999): 457-63. Elsevier Science B.V.

[6] Gurevich,Aleksandr V., Kirill P. Zybin Runaway breakdown and electric
discharges in thunderstorms Phys.-Usp. 44 1119, 2001.

[7] Higgins, D.F., C.L. Longmire, and A.A. O’Deil. A METHOD FOR
ESTIMATING THE X-RAY PRODUCED ELECTROMAGNETIC
PULSE OBSERVED IN THE SOURCE REGION OF A HIGH AL-
TITUDE BURST. Rep. The Defense Nuclear Agency, Feb. 1973.

19

[8] Marshall, Thomas C., Michael P. McCarthy, and W. David Rust. ”Elec-
tric Field Magnitudes and lightning Initiation in Thunderstorms.” Jour-
nal of Geophysical Research 100 (1995): 7097+.

[9] McCarthy, M.P. and G.K. Parks (1985), Further observations of X-rays
inside thunderstorms, Geophys. Res. Lett, 12(6), 393-396.

[10] Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in Fortran: The Art of Scientific Comput-
ing. 2nd ed. New York: Press Syndicate of the University of Cambridge,
1992.

[11] Tierney, Heidi E., R. A. Roussel-Dupre, E.M.D. Symbalisty, and
W.H. Beasley. ”Radio Frequency Emissions From a Runaway Electron
Avalanche Model Compared with Intense, Transient Signals from Thun-
derstorms.” Journal of Geophysical Research 110 (2005): 7097+.

20

2012 Computational Physics Student Summer Workshop: Final Reports

Grain Boundary Formation
Simulation

(Cynthia Reichhardt, mentor)

Pattern Formation in a 2D Colloid System

Danielle McDermott and Jeffrey Amelang

Advisor Cynthia Reichhardt

August 15, 2012

1 Abstract

Using numerical simulations we study pattern formation in a collection of colloid particles interating with
a square pinning lattice. As the density of colloids is varied from 4 colloids per pin to 5, the ground state
configuration changes from a trianglar lattice to a square lattice. The intermediate fillings between 4 and 5
display a range of patterns: the lower density patterns have distinctive grain boundaries separating ordered
regions. These grains form drops, stripes, and an unusual crystalline lattice at the 4.5 filling. As the density
increases just beyond 4.5, it no longer makes sense to discuss individual grain boundaries and a quasi-ordered
tiling occurs. As the density approaches 5, the ground states contain patches of both the 4-fold 5th filling
and the quasi-ordered states.

For fillings below 4.5 the location and properties of the pins were altered with the intent of controlling the
location of grain formation. By altering pinning sites, certain patterns/densities proved to be more stable
than others. Furthermore, by selectively moving or removing pins, we were able to consistedly control the
location of drop and stripe formation, thus making these patterns relevant for device fabrication.

While the static anneals of the various densities already contain a rich variety of behavior, we put
a potential on the system and observed the current response of bubbles, stripes, and patches to drive.
Only a few of the fillings (aside from crystal 4, 4.5, and 5.0) had a depinning value for the individual
colloids. The grain boundary depinning varied greatly in the bubble systems since it largely depends on
the vertical/horizontal orientation of the grain. The striped systems showed a fairly consistant behavior
of collectively traveling stripes for low drive values, followed by grain depinning/breaking. We witnessed
hysteresis when lowering the current back to zero in the bubbles and stripes. The fillings above 4.5 showed
a classic plastic regime and no hysteresis.

A primary focus of the summer project was to develop a code which could identify and characterize
the grain boundaries in the system. The culimination of the summer work was approximately 5K lines of
code which calculates the voronoi tessellation in 2D, finds grain boundaries, creates particle trails in driven
systems, and creates energy maps. Furthermore the code analyzes the following grain boundary properties:
identifies them as bubbles, stripes, or neither, finds the aspect ratio of the bubbles, calculates the stripe
angle with respect to the x-axis, and tracks the grain boundary velocity.

2 Introduction

The study of pattern formation reveals universal tendencies of particles to form ordered and quasi-ordered
states. We use a two-dimensional system of colloids interacting with a square pinning lattice to study the
kinds of patterns that may be formed in many Condensed Matter systems of interest including monolayers
of atoms or molecules on a crystal surface and superconducting vortices interacting with pinning sites.

Repulsively interacting colloid particles which are isolated in a 2D system will form into a triangular
lattice in order to minimize their interaction energies. If these particles instead are placed in a region
containing a rigid substrate lattice, they will be forced to arrange into commensurate and incommensurate
patterns due to interactions with the lattice. The commensurability of the lattice depends on the density of
colloids in the system.

1

The patterns formed by the colloids will depend strongly on the ratio of colloids to pins. Given a precise
ratio of 4:1, the colloids neatly populate the pins and form a triangular lattice [1]. A ratio of 5:1 will yield
a 4-fold pattern of squares rotated by 27◦ [1] with respect to the pinning lattice.

Figure 1: The 4th and 5th fillings of the vortex system studied by Reichhardt et. al. [1]

The intermediate fillings have not previously been modeled and the resulting square lattice and stripes
resemble patterns seen by Curran et al in their SHPM imagining for vortex lattices in Sr2RuO4 single
crystals [2]. Many questions remain regarding the superconducting SRO system that could potentially be
studied using complimentary systems such as 2D colloids.

3 Model and Simulation

We perform simulated annealing of a 2D system of colloids by numerically integrating the overdamped
equation of motion:

ηvi = fi = f cc
i + f cp

i + fT
i

The total force per unit length acting on colloid i is fi. The colloid-colloid interaction f cc
i = −ΣNc

j 6=i∇V (rij)
is described by the Yukawa potential:

V (rij) =
E0

rij
exp(−κrij) (1)

Where rij = |ri − rj |, the scaling factor E0 is a screened Coulomb factor: Z∗2/(4πεa0) with effective
charge Z∗ and a solvent dielectric constant of ε. The exponential describes the soft cutoff of the Yukawa
potential with 1/κ as the screening length.

The pinning force f cp
i is described by:

Vp(rik(P)) = −(
fp

2rp
)(rik(P) − rp)2 Θ(rik(P) − rp)

where Θ is the Heaviside step function, fp is the maximum pinning force, Np is the number of pinning
sites, and rik = |ri − r(p)

k |. Temperature is added as a stochastic term with properties:

〈fT
i (t)〉 = 0

and

〈fT
i (t)fT

j (t′)〉 = 2ηkBTδijδ(t− t′)

4 Colloid Ground States on a Square Pinning Lattice

The square pinning lattice was randomly populated with colloid particles for particle densities, or fillings,
ranging from Nc/Np = 4 to 5. The annealed ground states are found by slowing cooling a system from a high

2

temperature. The 4th and 5th fillings are known from previous simulations [1] to form crystalline lattices.
Because the 4th filling is triangular and the 5th filling is square, the intermediate fillings were expected to
illustrate how one ordered lattice could reform into another.

The pinning lattice constant is a0 = 3.6 and system sizes are LxL = 36x36 (100 pins), 72x72 (400 pins),
and 108x108 (900 pins). Because the 72x72 system was composed of Np = 400 pins (20a0x20a0), an ordered
state with lattice parameter 2a0 emerged for the filling (Nc/Np)=4.5. This ordering was not observed in the
other sizes since the crystal could not fit in the 10x10 or 30x30 lattices. All figures and data displayed will
be drawn from the 72X72 systems, but the general trends of this paper were observed in all three sizes.

4.1 Bubble Properties

As expected the colloid densities just above 4:1 form a triangular pattern with small imperfections. Once
more colloids are added, more imperfections take the shape of drops: a degenerate triangular lattice rotated
with respect to the original surrounded by a grain boundary.

Figure 2: The bubble systems contain two regions of 6 sided colloids separated by a grain boundary, where
one is rotated with respect to the other by 90◦.

Above a filling of 4.03, it becomes most favorable for a single grain boundary to form, and the drop grows
until it reaches an unstable size (which is 4.08 in the 72x72 system). Like drops, the fillings between 4.08 and
4.095 feature triangular regions separated by grain boundaries. But unlike the drops, these systems prove
unstable to modified pinning and applied currents.

4.2 Stripe Properties

Once a certain density is reached (4.095 in the 72x72 system), the grain boundaries become stripes dividing
ordered regions. As the density of the particles is increased, the stripes grow closer together until they are
dense enough that identifying individual stripes and grain boundaries is no longer reasonable.

Unexpectedly, the 4.5 filling is a crystal state with lattice parameter 2a0. Unlike the 4th and 5th filling,
the particles do not all see the same symmetries, but rather have Voronoi regions with sides of 4, 5, 6, and
7. These different faces form a tiled pattern with 2-fold symmetry.

4.3 Tiling and Patches

While the fillings surrounding 4.5 might be considered densely striped, it becomes difficult to consider the
grain boundaries as distinct. Fillings above 4.7 are composed of patches of 4-fold coordinated colloids (as
the 5th filling) and quasi-ordered pattern of 5, 6, and 7 sided particles (as the 4.6 filling).

Beyond 4.7 a clear transition toward the 5th filling begins. The quasi-ordered tiling competes with 4-fold
square lattice in patches.

5 Characterizing the Phase transistions of the Ground states

A major goal of this work is to study a solid-solid phase transistion. As the density of the colloids increases,
the nature of the ground state of the colloids changes considerably. The Voronoi cells which do have have

3

Figure 3: Below 4.1 the colloids form drops, one wide stripe, and final approach ordered stripes. The
figure shows the voronoi tessellation of the particle positions, colored by number of sides: 5-sided polygons

are blue, 6-sided polygons are white, and 7-sided polygons are red.

Figure 4: Above 4.1 the colloids form ordered stripes. At 4.5 they form an ordered crystal with lattice
constant 2a0. Fillings about 4.5 begin to resemble tilings and then become patches of that tiling and the

5th ordered filling.

Figure 5: A 6x6 section of the ordered filling 4.5 which has a lattice constant of 2a0

4

(a) A 6x6 section of
the 4.6 filling. The

tiling of 7-sided faces
at pinning sites is

nearly perfect.

(b) A 6x6 section of
the 4.7 filling. The
higher fillings have

regions of 4 sided faces
(as the 5th filling)

emerging.

Figure 6: The transition from tiled to patches

Figure 7: Fillings about 4.5 begin to resemble tilings and then become patches of that tiling and the 5th
ordered filling.

6 sides are considered to be defected cells. Below the ordered 4.5 filling, the defected cells increase linearly.
At the 4.5 filling, there is an unusually high number of 5-sided cells. Beyond the 4.5 filling, the systems still
appear visually to contain stripes, but the tiling pattern of 7-sided cells at the pinning sites is clear. Once
the density reaches 4.7 and beyond, the number of 4-sided cells increases rapidly.

6 System Deformation with Modified Pinning

By turning off pins in key locations, we were able to control the well-ordered stripe systems. It was clear
that the systems less than 4.2 filling are less stable than the more densely striped systems. While the 4.3
and 4.4 fillings were able to adjust to meet the defected pin regions, the lesser fillings would deform and
break in the presence of defects in the lattice.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

4.0 4.2 4.4 4.6 4.8 5.0

p4
, p

5,
 p

6,
 a

nd
 p

7

Face data vs. Filling

4sides
5sides
6sides
7sides

Figure 8: The Voronoi tessellation for each filling reveals the percentage of colloid containing cells with 4,
5, 6, and 7 sides.

Figure 9: While turning off pins does not necessarily capture the bubble, it does sometimes work. (c) The
bubble was pinning between two pins that had been turned off.

Figure 10: It is clear that the 4.15 filling breaks easily when exposed to deformations in the pinning lattice

Figure 11: The 4.3 filling is clearly robust under deformed pinning. The direction of striping can be
controlled by selecting how/where the pins are turned off

6

Figure 12: While the bubble can be more consistently pinned by moving pins, it increases the number of
defects in the system

Figure 13: It is clear that the 4.15 filling breaks easily when exposed to deformations in the pinning lattice

Figure 14: Moving pins in the 4.3 filling introduces considerably more defects than merely turning the pins
off

7 Identifying and Characterizing Grain Boundaries

In figures 3 and 4 (which highlight the defected particles) it is apparent that there are grain boundaries, or
structures of dislocated particles that separate different grains (illustrated in figure 15). These grains are
groups of particles that have 6-sided voronoi polygons and are either horizontally or vertically oriented. For
a given filling, whether the horizontal or vertical grain was more plentiful was observed to be random and is
not considered significant.

The colored cells in figures 3 and 4 show particles that have a number of sides different than 6 and collec-
tively demarcate the grains with grain boundaries. In this section, we’ll first discuss how grain boundaries
were programmatically detected, after which we’ll look at their geometric and energetic properties.

7.1 Identifying Grain Boundaries

Particles whose corresponding voronoi polygon had a number of sides different than 6 were considered
defected and were used to form the grain boundaries. From the pool of defected particles, one was chosen
as the beginning of a new grain boundary. Successive grain boundary members were chosen as the closest
particle to the end of the grain boundary that was within a tier of neighbors (second, third, etc) as well as
the neighbors required to reach that particle. If there were defected particles remaining in the pool, another
grain boundary was formed in the same way.

The presented algorithm performs well for closed grain boundaries, but can identify open grain boundaries
as several pieces. To fix this, individual grain boundaries are then concatenated if their ends satisfy the
proximity criterion. Lastly, the resultant grain boundaries are smoothed by switching the order of the inner

7

Figure 15: Distribution of six sided Grains versus Filling. Particles that aren’t oriented strongly enough to
be horizontal or vertical are colored white, and grain boundaries are colored gray.

Figure 16: Illustration of the steps to Identify Grain Boundaries. Corrected paths are shown in red dashed
arrows.

two grain boundary members of each set of four if the sum of inscribed angles can be reduced. Finally,
applicable boundaries are closed. The process is illustrated in figure 16.

For closed grain boundaries, bubbles can be programmatically differentiated from stripes by traversing
the grain boundary starting from one particle and determining in which “periodic copy” of the domain that
particle is again found. For bubbles, that “periodic copy” is the domain in which the traversal was started.

Beyond a filling of 4.45, there are no longer discernable grain boundary structures and the algorithm is
not applied.

8

7.2 Grain Boundary Geometric Properties

Figure 17: Bubble Aspect Ratios (coloring indicates grain orientation)

Unsurprisingly, the number of defected atoms and the total length of all grain boundaries grow linearly
with filling for both bubbles and stripes. The aspect ratio of the bubble grain boundaries is shown in figure
17. Cynthia, is there anything to say about this? TODO: verify that the aspect ratio is the same after
wiggling the parameters of the anneal.

Figure 18: Stripe Orientations (The voronoi tessellation is colored by the number of sides of each cell)

All stripe systems were found to anneal to parallel lines, though for some fillings a few of the lines were
joined by small tendrils. The angle that each system formed with respect to the x axis is shown in figure 18.
No shallow or steep angles were observed in the annealed systems. Cynthia, is there anything to say about
this? TODO: verify that the angle for a given filling is the same after wiggling the parameters of the anneal.

9

Maybe: The magnitude of the orientation was robust with regards to the parameters of the simulation, but
the sign was observed to be random and is not considered significant.

Figure 19: Number of Grain Boundaries (The voronoi tessellation shows the grain boundaries, each
colored by their index)

The number of “significant” grain boundaries, which tries to ignore grain boundaries far smaller than the
largest one at that filling, is shown in figure 19. At very low fillings, the defected particles more resemble
dislocations than grains and they do not clump together, so there are several. Once there is a sufficient
number of defects, a single grain boundary forms. When the bubble grows large enough to interact with
itself across the periodic boundary conditions, a single stripe that winds the domain several times forms.
Eventually, multiple independent stripes form instead of one large stripe.

7.3 Grain Boundary Energetic Properties

Figure 20: Energy Fields (The voronoi cells of defected particles are drawn semi-transparently)

Using the interaction potential (equation 1), the interaction energy with respect to all the particles at
any given point can be computed, as shown by the energy fields in figure 20. By computing the energies
only at particle locations, grain boundaries can be compared by their energetic structure and properties.

10

Figure 21: Energy Distribution (note the irregular spacing on the vertical axis and the fact that the filling
goes up to 5)

Figure 21 shows the distribution of energy of the vortices at each filling. The total energy of the system of
particles grows slightly faster than linearly with filling, which is unsurprising because the energy per vortex
only transitions from 6.3 at a filling of 4 to 7.9 at a filling of 5.

The energy landscape is significantly different between the bubble, stripe, and patch phases. In the bubble
phase, the span of energies seen is mostly the same for all bubble sizes. The average energy of particles in
the grain boundary is constant, which shows that the grain boundaries are not becoming more energetic as
the filling is increased, they just become longer. In the stripe phase, the energy span is different at each
filling and the spread is much smaller. In the patch phase, the energy span becomes wide again similar to
the bubble phase, but the extrema do change from one filling to the next.

The energetic structure of the grain boundaries also changes significantly in the bubble, stripe, and patch
phases, as shown in figure 22. In the bubble phase (first panel), the grain boundary encircles the high energy
particles and there is a clear segregation of high and low energy particles. In the beginning of the stripe
phase (second panel), the grain boundary contains the majority of the high energy particles and the low
energy particles form their own stripes as far from the high energy stripes as possible.

However, at stripes formed from higher fillings (third panel), the grain boundaries contain both the
highest and the lowest energy particles, which form into dimers. The dimers can be observed beginning to
form on the edges of the stripes in the 4.25 filling. In the patch phase (fourth panel), there are no longer
grain boundaries and the regions of high and low energy particles grow in clumps.

8 Driven Systems

We apply a linearly increasing current fd = fdx̂ to our annealed systems to measure the depinning threshold
of the interstitial particles. We observed dynamical reordering in some systems. This reordering is quantified
by measuring the current of the system:

vx =
1
Nc

ΣNc
i vi · x̂

11

Figure 22: The energetic structure of grain boundaries at characteristic fillings. The voronoi cells are
colored by the energy of the corresponding particle

References

[1] C. Reichhardt, C. J. Olson, and Franco Nori. Commensurate and incommensurate vortex states in
superconductors with periodic pinning arrays. Phys. Rev. B, 57:7937–7943, Apr 1998.

[2] P. J. Curran, V. V. Khotkevych, S. J. Bending, A. S. Gibbs, S. L. Lee, and A. P. Mackenzie. Vortex
imaging and vortex lattice transitions in superconducting sr2ruo4 single crystals. Phys. Rev. B, 84:104507,
Sep 2011.

12

2012 Computational Physics Student Summer Workshop: Final Reports

Turbulent Mixing

(Rob Gore, mentor)

Turbulent modeling of plane mixing layer

Jeffrey Smith
Computational Physics Summer Workshop 2012

August 13, 2012

Abstract

This paper employs the BHR-3 turbulence model to simulate con-
stant and variable density plane mixing layer. The modeled form of
the Reynolds stress, turbulent mass flux, and density-specific volume
covariance are developed by Besnard et al. [4]. Motivated by limita-
tions in modeling Rayleigh Taylor instability, a two length scale model
developed by J. Schwartzkopf et al. are used to independently tune dif-
fusion and dissipation rates. Coefficients for the pressure-strain model
are proposed to match the experimental Reynold stress distribution of
turbulent kinetic energy for a constant density plane mixing layer of air.
The coefficients established for a constant density plane mixing layer
are applied to a variable density plane mixing layer of nitrogen and
helium, the large density difference across the mixing layer is shown to
have little influence on the growth of the mixing layer.

1 Introduction

Modeling high Reynolds number turbulent flows by single point closure
methods continues to receive interest by many disciplines of research, the
Reynolds Averaged Navier Stokes (RANS) method has the potential to char-
acterize complex turbulent flows [7]. The transport terms of the Reynolds
stress equation are model with the approach of Daly and Harlow [5]. The
pressure-strain terms are modeled with the LRR-IP model [1]. Higher order
terms such as turbulent mass flux and density specific volume covariance
are modeled according to Besnard 1992 [4] .

A limitation of single point closure methods used with RANS equations is
the lack of ability to capture all the length and time scale which are needed
to fully characterize turbulent flows. Conventional methods use a single
dissipation equation to model the average length and time scales thought

1

to best capture the scale needed to model transport and dissipation of the
turbulent flow. An approach to overcome this limitation is to introduce
and additional dissipation equation which applies another length and time
scale to uniquely model both the transport and dissipation scale. Such multi-
scale models has been proposed in the past (Hanjilac, Launder and Schiestel
1980). Motivated by the inability for a single scale model to predict Rayleigh
Taylor Instability and homogeneous variable density decay, J. Schwarkopf
et al. suggest the use of a two length/time scale model which aims to better
characterize complex turbulent flow. In this work, one and two length/time
scale models are applied to constant and variable density plane mixing layer
with the motivation to predict: growth of mixing layer, self-similar Reynold
stress amplitudes, and distribution of Reynold stresses which are referenced
against the experimental date of Bell and Metha [2], Brown and Roshko [3],
and Direct Numerical Simulation date of Rogers and Moser [8].

2 Governing equations

The governing equations of fluid flow (Navier-Stokes equations) are averaged
and the result is a new set of differential equations that are solved for the
mean flow field variables. The approach is to decompose the instantaneous
flow field variables into the average and fluctuating components

p(xi, t) = p(xi) + p′(xi, t) (1)

ρ(xi, t) = ρ(xi) + ρ′(xi, t) (2)

ui(xi, t) = ui(xi) + u′i(xi, t) (3)

the bar indicates the time average and the prime indicates the magnitude of
the fluctuating component at time t, by definition the time average of the
fluctuating component φ′ is zero

φ̄′ = lim
t→+∞

1

t

∫ t

0
φ′ dx = 0 (4)

For variable density it is convenient to decompose the quantities into a mass
weighted average and fluctuation

u = ũ+ u′′; ũ =
ρu

ρ̄
(5)

then

ũ = ū+
ρ′u′

ρ̄
(6)

2

and

u′′ = u′ − ρ′u′

ρ̄
(7)

from these definitions

u′′ 6= 0 (8)

ρu′′ = 0 (9)

ũ known as Favre averaging. Equations 1, 2, and 5 are substituted in the
continuity and momentum equation and the equations themselves are aver-
ages. The results is a new set of equations where the variables to be solved
are the mean quantities. The averaged equations are

∂ρ̄

∂t
+
∂ρ̄ũk
∂uk

= 0 (10)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũk
∂xk

= − ∂P̄
∂xi

+
∂τ̄ij
∂xj
− ∂

∂xj
ρu′′i u

′′
j (11)

the last term in the averaged momentum equation is the Reynolds stress ten-
sor which introduces six additional equations. The governing equation are
now unclosed and therefore, the Reynold stress tensor requires a modeling
approach.

2.1 Lenght Scale

The length scale is defined by the turbulent kinetic energy which is half the
trace of the Reynold stress tensor K = 1/2Rii, and a modified dissipation
equation originally proposed by Hanjalic and Lauder [6]

∂ε

∂t
+
∂ũkε

∂xk
= −Cε1

ε

K
R̃ij

∂ũi
∂xj
− Cε2

ε2

K
+

∂

∂xk

(
Cε
K

ε
R̃ij

∂ε

∂xj

)
(12)

+Cε3
ε

K
aj
∂P̄

∂xj

the last term of equation 12 is added for variable density flows [9], the length
scale S is defined as

S =
K

3
2

ε
(13)

3

and time scale

τ =
S√
K

(14)

Two length scales has the ability to capture the dominate scales of diffu-
sion and dissipation, independently. Two sets of coefficients are needed for
each length scale.

∂(ρ̄Sdiff)

∂t
+
∂ũkS

∂xk
= −

Sdiff
K

(
3

2
− C1

)
ρ̄R̃ij ũi,j −

(
3

2
− C2

)
ρ̄
√
K︸ ︷︷ ︸

production

+
Sdiff
K

(
3

2
− C4

)
ajP̄,j − C3ρ̄Sdiff ũj,j︸ ︷︷ ︸

production

+Cs

(
Sdiff√
K
ρ̄R̃knSdiff,n

)
k︸ ︷︷ ︸

Diffusion

(15)

τdiff =
Sdiff√
K

(16)

∂(ρ̄Sdiss)

∂t
+
∂ũkS

∂xk
= −Sdiss

K

(
3

2
− C1v

)
ρ̄R̃ij ũi,j −

(
3

2
− C2v

)
ρ̄
√
K︸ ︷︷ ︸

production

+
Sdiss
K

(
3

2
− Cv4

)
ajP̄,j − C3vρ̄Sdissũj,j︸ ︷︷ ︸

production

+Cs

(
Sdiss√
K
ρ̄R̃knSdiss,n

)
k︸ ︷︷ ︸

Dissipation

(17)

τdiss =
Sdiss√
K

(18)

2.2 Reynolds stress tranport equation

The set of differential equations for the transport of the Reynolds stress is
[9]

4

∂

∂t
(ρ̄R̃ij) +

∂

∂xk
(ρ̄ũkR̃ij) = ai

∂P̄

∂xj
+ aj

∂P̄

∂xi
− ρ̄R̃ik

∂ũj
∂xk
− ρ̄R̃jk

∂ũi
∂xk︸ ︷︷ ︸

Production

−ai
∂τ̃jk

xk
− aj

∂τ̃ik

xk

− ∂

∂xk
ρu′′i u

′′
ju
′′
k +

∂

∂xk

(
u′′i τ

′′
jk + u′′j τ

′′
ik

)
− ∂

∂xj
u′′i P

′ − ∂

∂xi
u′′jP

′︸ ︷︷ ︸
Transport

+ P̄ ′

(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
︸ ︷︷ ︸

PressureStrain

− τjk ′′
∂u′′i
∂xk
− τik ′′

∂u′′j
∂xk︸ ︷︷ ︸

Dissipation

(19)

The mean variable to be solved are ũ, ρ̄, P̄ , and R̃ij . The terms that need
modeled are transport, pressure strain, and dissipation. The mean viscous
stress tensor terms are discarded at high Reynold numbers. The transport
terms are modeled as originally put forth by Daly and Harlow 1970 [5]. The
dissipation and pressure-strain terms are modeled according to Launder 1975
[1].

The modeled form of the exact Reynolds stress transport equation is [9]

∂(ρ̄R̃ij)

∂t
+

∂

∂xk
(ρ̄ũkR̃ij) = ai

∂P̄

∂xj
+ aj

∂P̄

∂xi
− ρ̄R̃ik

∂ũj
∂xk
− ρ̄R̃jk

∂ũi
∂xk︸ ︷︷ ︸

Production

+Cr3
∂

∂xk

(
τdiff ρ̄R̃km

∂R̃ij
∂xm

)
︸ ︷︷ ︸

Transport

−Cr4ρ̄
1

τdiss

(
R̃ij − 1/3R̃kkδij

)
︸ ︷︷ ︸

SlowReturntoIsotropy

(20)

+ ρ̄Cr2

(
R̃ik

∂ũj
∂xk

+ R̃jk
∂ũi
∂xk

)
− Cr22/3ρ̄R̃mk

∂ũm
∂xk

δij − Cr1
(
ai
∂P̄

∂xj
+ ajv

∂P̄

∂xi

)
︸ ︷︷ ︸

RapidReturntoIsotropy

+ Cr12/3ak
∂P̄

∂xk
δij︸ ︷︷ ︸

RapidReturntoIsotropy

− ρ̄2/3
K

τdiss
δij︸ ︷︷ ︸

Dissipation

2.3 Turbulent mass flux

The term ρ′u′ known as turbulent mass flux is nonzero and appears in the

averaged governing equations. The transport equation for ai = ρ′u′

ρ̄ can be

5

derived from the Navier-Stokes equations the model for is [4] [9]

∂ρ̄ai
∂t

+
∂

∂xk
(ρ̄ũkai) =

∂

∂xi
b(1− Cap)P̄ −

∂

∂xk
(1− Car)R̃ikρ̄

− ∂

∂xk
(1− Cau)ρ̄akũi +− ∂

∂xk
ρ̄akai + Ca

∂

∂xk
ρ̄τdiff R̃kn (21)

−Ca1ρ̄
1

τdiss
b
∂ai
∂xn

2.4 Variable-density volume covariance

3 Results and Discussion

Instability of a plane mixing layer was simulated on xRage. A temporally
evolving shear layer was established by two flows in parallel with equal
velocities and opposite direction.

The ideal Reynolds stress transport model coefficients are found empir-
ical based on simplified experiments which aim to isolate each terms and
determine their contribution. For single length scale constant density plane
mixing layer, the normal Reynolds stress components in the direction of flow
can be reduced to

∂(ρ̄R̃11)

∂t
+

∂

∂xk
(ρ̄ũkR̃11) = ρ̄ (Cr2 − 1)

(
R̃1k

∂ũ1

∂xk
− R̃1k

∂ũ1

∂xk

)
+Cr3

∂

∂xk

(
τ ρ̄R̃1m

∂R̃11

∂x1

)
− Cr2

2

3
ρ̄R̃1k

∂ũm
∂xk

(22)

−Cr4ρ̄
1

τ
R̃11 − ρ̄

2

3

K

τ

with length scale

∂(ρ̄S)

∂t
+
∂ũkS

∂xk
= − S

K

(
3

2
− C1

)
ρ̄R̃ij

∂ũi
∂xj
−
(

3

2
− C2

)
ρ̄
√
K (23)

−C3ρ̄S
∂ũj
∂xj

+ Cs

(
S√
K
ρ̄R̃knS,n

)
k

and time scale

τ =
S√
K

the coefficients from the pressure-strain model Cr2 and Cr4 indirectly af-
fect the production and dissipation, respectively. Since our first intent

6

is to investigate the growth rate of the mixing layer and production of
the normal Reynold stresses the coefficient set by the (LRR-IP) model of
Cr2 = 0.6, Cr4 = 1.8 are used. As seen from the equation above the other
contributers to the normal Reynold Stress are Cr3 and the time scale, the
time scale is determined by the modeled form of the dissipation equation or
length scale equation. The suggested coefficients of the dissipation equation
are C1 = 1.44, C2 = 1.92 and C3 = 0.15 (Launder 1990). More recent ex-
periments of homogeneous decaying turbulence sets the value of C2 closer
to 1.77 (Mohammed and Laur) this value is used throughout this study.

3.1 Growth of mixing layer

One important characterization in free shear is the diffusion of momentum
perpendicular to the free stream flow; the boundary of this momentum layer
is defined in several ways by other investigators.

In this work the characteristic width of the mixing layer in a temporally
evolving shear flow is defined by ±10% of the mean velocity profile

Ū(t, y(t)l) = UL + 0.1∆U (24)

Ū(t, y(t)h) = Uh − 0.1∆U (25)

δ(t) = y(t)h − y(t)l (26)

where Ul and Uh are the low and high flow velocity, ∆U = Uh − Ul, and y
is the cross-stream spatial coordinate.

It is desired for universality to have the center of the mixing domain
referenced to zero, regardless of simulation setup or method of physical
measurements. The abscissas of the mean velocity profile is shifted by ȳ =
1
2(y(t)h+y(t)l) in the positive direction. The spatial cross-stream coordinate
of the mean velocity profiles are non-dimensionalized by δ(t).

η =
y − ȳ
δ

(27)

The growth rate of the self-similar temporally evolving mixing layer is
found from [9].

β =
1

∆U

∆δ(t)

∆t
(28)

This simplified model with the coefficients described above is compared to
the experimental results of Bell and Metha [2] and DNS data of Rogers and
Mosers [8]. Profiles of the mean velocity and Reynold stresses Rij/∆U

2 are

7

(a) (b)

Figure 1: (a) Scaled mean velocity profile compared to experimental results of Bell
and Metha and DNS data of Rogers and Mosers. (b) Scaled Reynolds stresses
Ruu, Rvv, and Ruv

plotted against η in figure 1a and 1b. While the scaled velocity profile has
developed to agree with experimental results, the Reynold stresses are clearly
being under-predicted, additionally, the growth rate of the mixing layer for
figure 1a and 1b is β = 0.025 which is well below the the experimental
growth rate β = 0.065 and DNS growth rates β = 0.062.

A principal observation of the plane mixing layer is a self-similar state
is obtained after an initial transient time or distance. Figure 2b shows the
evolution the Ruu; shortly after t = 0.0002 seconds Ruu becomes nearly
constant, the sharp rise in Ruu at t > 0.001 is due to the mixing layer
encountering the width of the simulation domain. The evolution of the
Reynolds stress in the stream-wise direction has reached a self similar state
at 2 × 10−4 < t < 10 × 10−4 seconds. The growth rate of the mixing layer
is found during the steady state.

The value of C1 in equation 23 is lowered to 0.7 to decrease the dissipa-
tion, or alternatively, increase the growth rate. The scaled velocity profile
and Reynolds stresses are shown in figure 3a and 3b. The growth rate has in-
creased to 0.067, comparable to experiment and the scaled Reynolds stresses
obtained at self-similarity closely match experiment.

Increasing the length scale to compensate for under-predicated growth
rates has inadvertently affected the transport of turbulent kinetic energy as
seen by the widened profile of the Reynold stresses in figure 3b. The trans-
port term in equation 20 is directly proportional to the time scale by lowering

C1 to decrease dissipation the transport term in equation Cr3
∂
∂xk

(
τ ρ̄R̃km

∂R̃ij

∂xm

)

8

(a) (b)

Figure 2: Self-similiar growth of mixing layer (a) the characterisitc mixing width is
plotted against time after an initial transient period (b) the initial transient period
is shown t < 0.002s, the rapid growth if the Reynold stress is due to the mixing
layer encountering the boundary of the domain.

is increased and results in the widened Reynold stress profile.
In the interest of matching the transport of Reynolds stress using a single

length scale the coefficient Cr3 and Cµ could be adjusted to compensate for
the increased time scale.

3.2 Two Length Scales

In order to capture the effects of diffusion and dissipation John Schwartzkopf
suggested the use of two length scales. One will impact the modeled trans-

port term Cr3
∂
∂xk

(
τ ρ̄R̃km

∂R̃ij

∂xm

)
and the other will impact the modeled dis-

sipation term −ρ̄2
3
K
τ . C1 and C1v can be calibrated to match the dissipation

and diffusion of the experimental data of Bell and Metha [2]. The transport
of kinetic energy across the domain is decreased by letting C1 = 1.2 and
comparable growth rates are obtained with C1v = 0.9. The growth rate
(β = 0.065) obtained with the two length scale model is comparable to that
obtained with the single length scale. In figure ?? the profile of Ruu closely
matches experiment in diffusion and amplitude, the slight shift of the of the
experimental data toward the low speed stream is a common observation
when Uh/Ul 6= 1 [8].

Figure 6 shows the evolution of the length scale equation at the center
of the mixing regions for one and two length scale models. The single length
scale is from figure 3 which matched the experimental and DNS growth rates

9

(a) (b)

Figure 3: Single length scale model with increased time scale to predict experimental
and DNS growth rates (a) Mean velocity profile. (b) Reynold stress profile.

(a) (b)

Figure 4: Two length scale model . (a) Mean velocity profile. (b) Reynolds stress
profile.

10

(a) (b)

Figure 5: Self-similar growth of mixing layer with two length scale model (a) the
characteristic mixing width plotted against time. (b) Evolution of Reynolds stress

with a reduced length scale coefficient C1 = 0.7, the two length scale model
of figure 4 also matches the growth rates. The length scale increases as the
flow evolves, the dissipation scale for the two length scale model and single
length scale closely follow one another which would be expected to produce
similar growth rates. In the effort to reduce the transport of Reynolds stress
the diffusion length scale is shown to be less than the dissipation scales for
the two length scale model.

3.3 Ideal coefficients for the pressure strain model

The pressure-strain term P̄ ′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
of equation 19 makes no contribu-

tion to the production or dissipation of the kinetic energy since its trace is
zero; it serves to redistribute energy among the components of the Reynolds
stress. The coefficients proposed by the LRR-IP model are Cr2 = 0.6 and
Cr4 = 1.8 and are used in 4. The length scale coefficients where calibrated
to match the stream-wise Reynolds stress Ruu, the distribution of Reynold
stresses, particularly the cross-stream component in figure ?? does not match
experiment. The value of Cr4 is set to 2.6 to increase the energy of Rvv,
alternatively, the value of Cr2 is set to 0.7, the results are compared in figure
7a and 12b, there is little distinction among them. In fact, any combination
Cr2 and Cr4within a range of 0 < Cr2 < 1 that satisfy

Cr2 = −0.125Cr4 + 0.925 (29)

11

Figure 6: Evolution of lenght scale equation for one and two length scale models

C1 C1v Cr2 Cr4 C2 C2v

1.2 0.9 0.6 2.8 1.77 1.77

Table 1: Coefficients used to predict the mixing layer growth rates, Reynolds stress
amplitude and distribution of constant density plane mixing layer, experimental
results of Bell and Metha are used for this calibration.

produce results nearly identical Reynold stress distribution to those in figure
7a or figure 12b. The combination of pressure-strain coefficients proposed by
other investigators and those that satisfy equation 29 is compared in figure
8.

3.4 Grid dependence

Multiple simulations were carried out with different girid sizes with a stream-
wise domain of 2cm and periodic in the x-direction. The magnitudes of Ruu
are shown to reach a self-similar state before the mixing width reaches the
boundary of the domain (figure9. The characteristic width of the momentum
layer does not exceed 1cm, see figure 5a. The results in this study use a grid
size of 0.01cm.

12

(a) (b)

Figure 7: The influence of the pressure-strain terms Cr2 and Cr4 on the distribution
of Reynold stresses, C1 = 1.2, C1v = 0.9, β = 0.067 (a) Cr2 = 0.6, Cr4 = 2.6. (b)
Cr2 = 0.7, Cr4 = 1.8

Figure 8: Chosen values of pressure-strain coefficients Cr2 and Cr4 by other in-
vestigators [7], compared to a range of values which give identical Reynolds stress
distribution.

13

Figure 9: Evolution od Ruu as a function of grid size, the legend has dimensions
(cm).

14

C1 C1v Cr2 Cr4 C2 C2v Ca1 Cb2 C4v Cau Car
1.2 0.9 0.6 2.8 1.77 1.77 2.8 1.8 1.36 1.0 0.3

Table 2: Coefficients used for variable density case.

3.5 Variable-density shear

A temporally evolving free shear layer between two different gases (nitrogen
and helium) was simulated and compared to the experimental data of Brown
and Roshko 1974 [3]. The simulation is carried out at a pressure of 7atm
and a velocity difference of 2000cm/s at room temperature.

The molecular weight (M) of helium and nitrogen is 4.003g/mole and
28.02g/mole, respectively. The density is found from the ideal gas law ρ =
PM
RuT

, ρHe = 1.22 × 10−3g/cm3, ρN2 = 8.45 × 10−3g/cm3, which gives a
density ratio of 7.

The density profile is scaled similar to the velocity profile, the cross-
stream spatial coordinate y is normalized by a characteristic mixing width
of the density profile, found from ±10% of the mean density

ρ(x, yα(x), 0) = ρl + α(ρh − ρl), for α = 0.9, 0.1 (30)

where ρl and ρh are the low and high densities. The characteristic width of
the shear layer is then

δρ = y0.9 − y0.1 (31)

the cross-stream position is scaled by the characteristic width and adjusted
laterally by the average of the position that defines the boundary of the
mixing width ȳ = (y0.9 + y0.1)/2

ηρ =
y − ȳ
δρ

(32)

The mean density is normalized by the density of nitrogen
Figure 10 compares the mean velocity profile with the constant density

experimental and DNS data previously shown in figure 3a. The flow of
nitrogen is on the left half of the figures and helium on the right.

Modified variable density coefficients shown in table 2 are used in the
nitrogen/helium mixing layer and compared to standard coefficients and
experimental results in figure 11. The value of the standard coefficients and
their origins that contribute the multi-species variable density mixing can
be found in reference [9].

15

Figure 10: Mean velocity profile of helium and nitrogen mixing layer.

Experiment DNS Model

0.062 0.065 0.065

Table 3: Mixing layer growth rates.

Figure 12 show the development of the mixing region based on a char-
acteristic width of the mean velocity and density profile. The growth of the
mean velocity profile is β = 0.065 almost equal to the constant density case
β = 0.067. In agreement with the results of Brown and Roshko, a density
ratio of 7 across the mixing layer has little effect of the growth of the mix-
ing region. Also, Brown and Roshko observe that the mixing region of the
density profile is almost twice as large as the mixing region of the velocity
profile, the growth rate of the density profile based on a characteristic width
is βρ = 0.077, the model predicts the density mix width will be about 15%
larger than the velocity mix width.

16

Figure 11: Mean density profile of helium and nitrogen mixing layer with standard
and modified variable density coefficients compared to experimental results of Brown
and Roshko. Standad coefficients can be found in [9]

(a) (b)

Figure 12: Growth of the temporal mixing region for nitrogen/helium plane mixing
layer (a) growth rate based on mean velocity profile. (b) growth rate based on mean
density profile.

17

4 Conclusions

Turbulent mixing of a plane mixing layer for constant and variable-density
flows has been simulated by second order closure model of the RANS equa-
tions and compared to experimental and DNS data. Although the pressure
strain coefficients suggested by Launder do not match the anisotropy of
Reynold stresses obtained from experimental data, it seems modeling the
diffusion and dissipation terms has the greater source of error in growth
rates and Reynold stress amplitudes. Satisfactorily growth rates can be
achieved with one and two length scales

While there has been many suggested coefficients of the pressure-strain
model (figure8) to match the anisotropy of free shear flows the model dis-
cussed in this paper requires the Rotta constant and return to isotropy
constant to satisfy equation 29.

References

[1] G.J. Reece B.E. Launder and W. Rodi. Progress in the development of
a reynolds-stress turbulence closure. J. Fluid Mech., volume =, 1975.

[2] J.H. Bell and R.D. Mehta. Application of a second-moment closure model
to mixing processes involving multi-component miscible fluids. AIAA J,
28:2034, 1990.

[3] G.L. Brown and A. Roshko. On density effects and large structure in
turbulent mixing layers. J. Fluid Mech., volume =, 1974.

[4] R.M. Rauenzahn D. Besnard, F.H. Harlow and Zemach. Turbulence
transport equations for variable-density turbulence and their relationship
to two-field models. LA-UR-12303:LANL, 1992.

[5] B.D. Daly and F.H. Harlow. Transport equations in turbulence. Phys.
Fluids, 13:2634, 1970.

[6] K. Hanjalic and B.E. Launder. A reynolds stress model of turbulence
and its application to thin shear flows. J. Fluid Mech., 52:609–638, 1972.

[7] B.E. Launder. An introduction to single point closure methology. Found
in Simulation and Modeling of Turbulent Flows, Chap. 6:243–310, 1996.

[8] M.M. Rogers and R.D. Moser. Direct simulation of a self-similar turbu-
lent mixing layer. Phys. Fluids, 6:903, 1990.

18

[9] J.D. Schwarzkopf. Application of a second-moment closure model to
mixing processes involving multi-component miscible fluids. 2012.

19

RANS modeling of RTI and HVDT with BHR3

Ben Trettel1 August 15, 2012

Abstract

The BHR3 turbulence model was improved to include two different scales as suggested by Livescu
et al. [Liv+09, §4.4.6]: one for turbulent transport and the other for turbulent dissipation. Additionally,
destruction terms modeled analogously to production terms were added to the turbulent mass-weighted
velocity equation. New model coefficients were developed for this model. The first change was to
use C2 = 1.77 for the isotropic turbulence decay coefficient rather than the k-ε model’s 1.92, which is
outside of the experimentally measured values [ML90; KF09].

The new model coefficients were developed to accurately model a wide range of experimental
and numerical results: constant and variable density Kelvin-Helmholtz instabilities, Rayleigh-Taylor
instabilities, and homogeneous variable density turbulence (HVDT) [LR07]. My work focused on the
buoyancy-driven flows: Rayleigh-Taylor instabilities and HVDT.

1 Rayleigh-Taylor instability background

A Rayleigh-Taylor instability occurs when a light fluid is under a heavy fluid. If a force is applied that
leads to an acceleration, the fluids will start to mix. Small disturbances (e.g. density fluctuations as shown
in figure 1) that are always present in real flows will initiate the Rayleigh-Taylor instability. This instability
eventually goes turbulent as can be seen in figure 2.

ρ

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 1: Initial conditions of a hypothetical Rayleigh-Taylor instability.

Figure 2 shows a spatially developing mixing layer, i.e., the two fluids start on the right separated by a
splitter plate but flow to the left, leaving the splitter place, which allows them to mix while moving. Each
vertical slice of fluid mixes as they move. This configuration is statistically steady — the time-averaged
solution is steady.

The simulations described in this work develop temporally. A heavy fluid is placed above a lighter fluid,
and the two fluids mix in time.

The Rayleigh-Taylor instability is controlled by the mass density difference of the two fluids. This density

1 Dept. of Fire Protection Engineering, University of Maryland, College Park. Email: ben.trettel@gmail.com

mailto:ben.trettel@gmail.com

Figure 2: View of a spatially developing Rayleigh-Taylor instability from experiments by Banerjee, Kraft, and
Andrews [BKA10, p. 133] for A = 0.47. The white fluid is lighter than the dark fluid. The fluids are moving to the
left at 1.65 m/s.

difference is non-dimensionalized to form the Atwood number, defined as

A =
ρH − ρL

ρH + ρL
, (1.1)

where ρH is the density of the heavy fluid and ρL is the density of the lighter fluid.

A key quantity of interest in the Rayleigh-Taylor instability is the width of the mixing layer and how fast
it grows. For large times, this width can be shown to be [BKA10, p. 128]

h(t) = α A gt2 (1.2)

where α is the growth rate, g is the gravitational acceleration due to gravity, and t is time.

Drazin and Reid [DR04] detail the theory behind a variety of different hydrodynamic instabilities,
including for Rayleigh-Taylor instabilities.

2 Model description and development

The equations governing the flow of single-phase mixtures of compressible fluids are [Sch+11; PV05]

∂ρ

∂t
+

∂

∂xj

(
ρuj
)
= 0 , (2.1)

∂ρui

∂t
+

∂

∂xj

(
ρuiuj + Pδij

)
=

∂τij

∂xj
+ ρgi , (2.2)

∂ρE
∂t

+
∂

∂xj

(
ρujE + Puj

)
=

∂

∂xj

(
τijui − qi

)
, (2.3)

∂ρcn

∂t
+

∂

∂xj

(
ρ(uj + Vn,j)cn

)
= 0 . (2.4)

where

ρ is the mass density,

2

uj is the j-th component of the fluid velocity,

P is the thermodynamic pressure,

τ is the shear stress tensor,

gi is the acceleration due to gravity in the i-th direction,

E is the total energy (sensible and kinetic — see Poinsot and Veynante [PV05, p. 21]) per unit mass,

qi is the total heat flux,

cn is the mass fraction for species n, and

Vn,j is the j-th component of the diffusion velocity.

To fully close this system additional equations are needed including equations of state for thermodynamic
pressure and internal energy and equations modeling the viscous stress, heat flux, and mass diffusion.

For Reynolds averaging, quantities are decomposed into mean (u) and fluctuating (u
′
) components [Pop00,

p. 83]: u = u + u
′

. (2.5)

The type of averaging used includes time, space, and ensemble averaging. Pope [Pop00, ch. 3] details the
definitions of these statistics among others.

For variable-density and compressible flows, mass weighted averages called Favre averages are preferred
to avoid additional unclosed terms that need to be modeled. A Favre averaged quantity is defined as

ũ ≡ ρu
ρ

(2.6)

and the quantity u is split into mean and fluctuating components

u = ũ + u
′′

. (2.7)

After averaging the fluid equations are Schwarzkopf et al. [Sch+11, sec. 2]

∂ρ

∂t
+

∂

∂xj

(
ρũj
)
= 0 , (2.8)

∂

∂t
(ρũi) +

∂

∂xj

(
ρũiũj + Pδij + ρR̃ij

)
= ρgi , (2.9)

∂

∂t

(
ρẼ
)
+

∂

∂xj

(
ρũjẼ

)
= − ∂

∂xj

(
Pũj
)
− ∂

∂xj

(
ρũiR̃ij

)
− ∂

∂xj

(
P′u′j

)
− ∂

∂xj

(
ρE′′u′′j

)
− 1

2
∂

∂xj

(
ρu′′i u′′i u′′j

)
−

∂qj

∂xj
, (2.10)

∂

∂t
(ρc̃n) +

∂

∂xj

(
ρũj c̃n

)
= − ∂

∂xk

(
ρu′′k c′′n

)
(2.11)

where R̃ij ≡ ρu′′i u′′j /ρ are the components of the Favre averaged Reynolds stress tensor. The equations
have many “unclosed terms” that must be modeled including the Reynolds stress. The BHR3 model
closes these equations.

3

A derivation of the Reynolds stress transport equation for single-phase compressible flows can be found
in Cebeci and Smith [CS74, Ch. 2].

2.1 BHR3 model development

Schwarzkopf et al. [Sch+11, sec. 3] reviews the development of the single scale version of the BHR3

turbulence model. The primary changes since that work are the inclusion of two turbulence scales (one
for turbulent transport and the other for turbulent dissipation) as opposed to one and adding destruction
terms modeled analogously to production terms in the turbulent mass-weighted velocity (ai) equation.

The use of two scales is motivated by turbulence’s multiscale physics. The energy spectrum of turbu-
lence [Pop00, ch. 6] includes many scales ranging from the scales of the dimensions of the domain studied
down to the smallest scales of the flow, the Kolmogorov scales. The smallest length scales dissipate energy
under the “energy cascade” viewpoint that Pope describes. Turbulent transport is associated with the
larger physical scales as the geometry usually dictates the resolved (i.e., large scale) transport.

Additionally, Livescu et al. [Liv+09, §4.4.6] describes why buoyancy-driven flows have at least two distinct
length scales. To summarize, the increase in energy of the large scales from buoyancy takes time to be
felt by the dissipation scales. Thus, at least these two distinct scales are necessary to accurately model
buoyancy-driven flows.

The BHR3 model includes two quantities to model the mixing: the density-specific-volume covariance,
b ≡ −ρ′(1/ρ)′ , and the turbulent mass-weighted velocity, ai ≡ −u′′ = ρ′u′i/ρ. The density-specific-volume
covariance is a measure of the mixing. In a fully mixed region b is zero. The turbulent mass-weighted
velocity represents the coupling of density and velocity and is zero for single-phase incompressible flows.
The turbulent mass-weighted velocity is also related to the turbulent mass flux, ρai.

The new model for destruction of ai is simple — the production and destruction of ai are related and an
“effective” production can be found by simply assuming that some of the destruction of ai is proportional
to the production of ai.

The next few sections list the full BHR3 equations. Descriptions of several terms are underbraced.

2.2 Length and time scales

∂ρSdiff

∂t
+

∂

∂xj

(
ρũjSdiff

)
= −Sdiff

K

(
3
2
− C1

)
ρR̃ij

∂ũi

∂xj
−
(

3
2
− C2

)
ρ
√

K +
Sdiff

K

(
3
2
− C4

)
aj

∂P
∂xj
− C3ρSdiff

∂ũj

∂xj︸ ︷︷ ︸
net production

+ Cs
∂

∂xk

(
Sdiff√

K
ρR̃kn

∂Sdiff

∂xn

)
︸ ︷︷ ︸

diffusion

(2.12)

∂ρSdiss

∂t
+

∂

∂xj

(
ρũjSdiss

)
= −Sdiss

K

(
3
2
− C1v

)
ρR̃ij

∂ũi

∂xj
−
(

3
2
− C2v

)
ρ
√

K +
Sdiss

K

(
3
2
− C4v

)
aj

∂P
∂xj
− C3vρSdiss

∂ũj

∂xj︸ ︷︷ ︸
net production

+ Cs
∂

∂xk

(
Sdiss√

K
ρR̃kn

∂Sdiss

∂xn

)
︸ ︷︷ ︸

diffusion

(2.13)

τdiss ≡
Sdiss√

K
, τdiff ≡

Sdiff√
K

(2.14)

4

2.3 Reynolds stress

∂
(

ρR̃ij

)
∂t

+
∂

∂xk

(
ρũkR̃ij

)
= ai

∂P
∂xj

+ aj
∂P
∂xi
− ρR̃ik

∂ũj

∂xk
− ρR̃jk

∂ũi

∂xk︸ ︷︷ ︸
net production

+Cr3
∂

∂xk

(
τdiff ρR̃km

∂R̃ij

∂xm

)
︸ ︷︷ ︸

diffusion

− ρ
2
3

K
τdiss

δij︸ ︷︷ ︸
destruction

+ ρCr2

(
R̃ik

∂ũj

∂xk
+ R̃jk

∂ũi

∂xk

)
− Cr2

2
3

ρR̃mk
∂ũm

∂xk
δij − Cr1

(
ai

∂P
∂xj

+ aj
∂P
∂xi

)
+ Cr1

2
3

ak
∂P
∂xk

δij︸ ︷︷ ︸
rapid return to isotropy

+ Cr4ρ
1

τdiss

(
R̃ij −

1
3

R̃kkδij

)
︸ ︷︷ ︸

slow return to isotropy

(2.15)

2.4 Turbulent mass-weighted velocity

∂ρai

∂t
+

∂

∂xk
(ρũkai) = (1− Cap)b

∂P
∂xi
− (1− Car)R̃ik

∂ρ

∂xk
− (1− Cau)ρak

∂ũi

∂xk︸ ︷︷ ︸
net production

+ ρ
∂

∂xk
(akai)︸ ︷︷ ︸

redistribution

+ ρCa
∂

∂xk

(
τdiffR̃kn

∂ai

∂xn

)
︸ ︷︷ ︸

diffusion

−Ca1ρ
1

τdiss
ai︸ ︷︷ ︸

destruction

(2.16)

2.5 Density-specific-volume covariance

∂ρb
∂t

+
∂

∂xk
(ρbũk) = −2(b + 1)ak

∂ρ

∂xk︸ ︷︷ ︸
production

+ 2ρak
∂b
∂xk︸ ︷︷ ︸

redistribution

+ ρ2Cb
∂

∂xk

(
τdiff

ρ
R̃kn

∂b
∂xn

)
︸ ︷︷ ︸

diffusion

−Cb1ρ
1

τdiss
b︸ ︷︷ ︸

destruction

(2.17)

2.6 Species mass fraction

∂ρc̃n

∂t
+

∂

∂xj

(
ρc̃nũj

)
=

∂

∂xk

(
Cc

Sdiff√
K

ρR̃km
∂c̃n

∂xm

)
(2.18)

3 Modeling the Rayleigh-Taylor instability

LANL’s code Rage [Git+08] was used to model Rayleigh-Taylor instabilities. The Atwood number used
for these simulations was 0.5 and the results were compared against DNS data by Cabot and Cook [CC06]
that was processed by Livescu et al. [Liv+09] and experiments by Banerjee, Kraft, and Andrews [BKA10].

3.1 Non-dimensionalization

The z location in the Rayleigh-Taylor mixing layer was non-dimensionalized by an integral mix width
defined by [AS90]

h(t) ≡ 6
∫ ∞

−∞
fv(1− fv)dz , fv ≡

ρ− ρL

ρH − ρL
. (3.1)

5

case DNS exp. RANS
growth rate growth rate growth rate

Rayleigh-Taylor (A = 0.5) 0.0416 0.141 0.0447

Kelvin-Helmholtz 0.062 0.069 0.067

Table 1: Growth rates for the Rayleigh-Taylor (A = 0.5) case and Kelvin-Helmholtz case for comparison. The RT
DNS growth rate is from the data-set of Cabot and Cook [CC06] and the experimental growth rate is from Banerjee,
Kraft, and Andrews [BKA10, p. 153] where the total growth rate is the sum of the two integral half mix-widths
interpolated for A = 0.5. For KH, the DNS growth rate is from Rogers and Moser [RM94], the experimental growth
rate is from Bell and Mehta [BM90], and the RANS BHR3 growth rate is from Smith [Smi12, §3.1].

The times were non-dimensionalized by [Sch+11, p. 25]

τ ≡

√
h(t)
A |g| , (3.2)

the velocities by
λ ≡ h(t)

τ
, (3.3)

and the energies by λ2.

3.2 Quantifying the model’s fit

I wanted a fast and easy way to approximately quantify how well the output from a run fit experimental
or DNS data. I developed a metric that my post-processing script (which is in an appendix) could output.
This metric was the sum of the errors in K, b, and az of the peak values, integral, width (where, as detailed
before, the ideal width is 1), and growth rate. The RANS model was compared solely against the DNS
data due to the discrepancy in the growth rates between the experiments and DNS. The DNS data was
smoothed a bit to reduce the effects of some small fluctuations in it that can not be represented in the
RANS simulation.

The BHR3 model does not accurately predict the tails of the Rayleigh-Taylor instability as can be seen in
figures 3 through 5. The tails of the RANS data are sharper than the tails of the DNS data. This problem
occurs because the tails of the DNS Rayleigh-Taylor layer are not fully turbulent. BHR3 applies to the
turbulent center of mixing layer, not the edges [Liv12]. Thus, BHR3 is not capable of complete accuracy in
the tails. In the tails, the instability retains memory of the initial conditions, which affects the growth rate
of the tails as explained below.

3.3 Growth rate

The growth rate of the Rayleigh-Taylor instability is only found in the self-similar regime, where the
previously detailed non-dimensionalization collapses all times into a single curve.

The growth rate was calculated with the following formula:

α =

(√
h(t) −

√
h(t0)√

A g (t− t0)

)2

(3.4)

as Schwarzkopf et al. [Sch+11, p. 22] did.

The growth rate for the Rayleigh-Taylor experiments is found to be over 3 times as high as the DNS

6

growth rate as seen in table 1. Livescu [Liv12] attributes the difference in the growth rates between the
experiments and simulations to the effects of the initial and boundary conditions. Low-wavenumber
oscillations that exist in reality influence the growth rates. Because of the difficulty in prescribing initial
and boundary conditions, the RANS growth rate was matched to the DNS growth rate in this work.

3.4 Results

For the model coefficients developed in this work, plots of turbulent kinetic energy (K), density-specific-
volume covariance (b), and turbulent mass-weighted velocity (az) are plotted in figures 3 through 5.
Unlike in previous work [Sch+11], the fit of the BHR3 model and the DNS is excellent.

0

0.01

0.02

0.03

0.04

0.05

0.06

-1 -0.5 0 0.5 1

K
/

λ
2

z/h(t)

K DNS
K RANS

Figure 3: Comparison of DNS and RANS results for the turbulent kinetic energy, K, for A = 0.5.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

b

z/h(t)

b DNS
b RANS

Figure 4: Comparison of DNS and RANS results for the density-specific-volume covariance, b, for A = 0.5.

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

a/
λ

z/h(t)

a DNS
a RANS

Figure 5: Comparison of DNS and RANS results for the turbulent mass-weighted velocity, az, for A = 0.5.

7

4 Modeling homogeneous variable density turbulence (HVDT)

ρ

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 6: Illustrative example of the initial conditions for density in homogeneous variable density turbulence.

Homogeneous variable density turbulence (HVDT) is generated by modeling a homogeneous mixture of
random density fluctuations in a periodic cube, e.g., as shown in figure 6. Livescu and Ristorcelli [LR07]
modeled HVDT with DNS, and the results were used as another point of comparison for the development
of model coefficients for the BHR3 model.

The BHR3 equations reduce to ODEs in this case. A Mathematica file was developed which integrated the
BHR3 equations in time, which I used to model HVDT. The results from the current model coefficients
are shown in figure 7.

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25

t, s

K, DNS
K, BHR3

b, DNS
b, BHR3

a, DNS
a, BHR3

Figure 7: The BHR3 model with current coefficients compared against DNS of homogeneous variable density
turbulence.

8

equation new coeff. new value justification old coeff. old value
Sdiff C1 1.2 KH growth rates C1 1.2
Sdiff C2 1.77 [ML90], [KF09] C2 1.92

Sdiff C4 1.0 RT growth rates C3 1.2
Sdiff C3 0 — —
Sdiff Cs 4.2 [Sch+11, p. 19] Cs 4.2
Sdiss C1v 0.9 KH Rij, α — —
Sdiss C2v 1.77 [ML90], [KF09] — —
Sdiss C4v 1.31 HVDT DNS [LR07] — —
Sdiss C3v 0 — —
Sdiss Csv 4.2 — —
Rij Cr3 0.42 [Sch+11, p. 23] Cr 0.42

Rij Cr4 2.6 KH Rij, α Cr3 1.8
Rij Cr2 0.6 RDT [Pop00, p. 423] Cr2 0.6
Rij Cr1 0.3 Cr1 0.3
ai Cap 0.28 RT K, ai, b, α — —
ai Car 0 — —
ai Cau 0 — —
ai Ca 0.3 RT width Ca 0.3
ai Ca1 2.8 RT K, ai, b, α Ca1 3.2
b Cb 0.3 RT width Cb 0.3
b Cb2 1.8 RT K, ai, b, α Cb1 2

cn Cc 0.56 [Sch+11, p. 23] Cc 0.56

Table 2: Model coefficients found to match the Rayleigh-Taylor instability and HVDT best. The old coefficients are
from BHR3 before this work.

5 Model coefficients and their justification

The model coefficients developed in this work and a summary of their justification is in table 2.

5.1 Isotropic turbulence decay

The standard k-ε model [Pop00, p. 375-376] chooses C2 = 1.92 as the isotropic turbulence decay coefficient.
The first step towards improving the coefficients was to choose C2 = C2v = 1.77 as suggested by Mohamed
and LaRue [ML90, p. 211, fig. 13] based on experimental data they compiled. More recent data summarized
by Kurian and Fransson [KF09, p. 13, fig. 9(a)] suggests that C2 increases with the grid Reynolds number,
however, this may be misleading as the lower grid Reynolds number experiments had significant
anisotropy [KF09, p. 9, fig. 4(a)] below a grid Reynolds number of approximately 2× 103.

The grid Reynolds number is defined as
ReM ≡

U0M
ν

(5.1)

where U0 is the free stream velocity, M is the mesh width, and ν is the kinematic viscosity of the fluid.
The effect of M can be thought of as the initial conditions’ effect. The grid Reynolds number combines the
initial conditions and the fluid velocity. The dependence on the grid Reynolds number for the isotropic
turbulence decay experiments may be due to the effect of the initial conditions, fluid velocity, anisotropy,
or possibly a cause that was not yet considered.

The spread in the data for grid Reynolds numbers greater than about 2× 103 suggests that 1.6 . C2 . 1.8

9

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

C
r2

Cr4

linear fit

Smith, 16.1

Smith, 19.1

Rodi (1972)

Younis

Gibson and Launder (1978)

Launder (1975)Naot (1970)

Smith, 16.2

Smith, 24.1

Donaldson (1972)

Figure 8: Proposed values of Cr2 and Cr4. The BHR3 model with the coefficients on the line return results
which visually match Kelvin-Helmholtz experimental data [BM90] nearly exactly [Smi12, §3.3]. The line is Cr2 =
−0.23Cr4 + 1. The numbered points refer to different configurations tested. Other citations are from [Lau96, p. 268].

with most of the data clustering around C2 = 1.77. Thus, choosing C2 = 1.77 seems most consistent with
the available experimental data.

Speziale and Bernard [SB92] prove theoretically that the isotropic decay exponent asymptotically ap-
proaches 2 as the Reynolds number increases. How high the Reynolds number needs to be for the
coefficient to be near two is unclear based on the mentioned work.

5.2 Rapid distortion theory

Pope [Pop00, p. 423] notes that if Cr2 is set to 0.6 then the isotropization-of-production model returns the
correct response of rapidly distorted isotropic turbulence.

Launder [Lau96, p. 268] suggests that compatible values of Cr2 and Cr4 lie on a line. Smith [Smi12, §3.3]
found a line that prescribes values of Cr2 and Cr4 as can be seen in figure 8. Using the BHR3 model with
coefficients found on this line visually appear to give results which excellently match the experimental
data of Bell and Mehta [BM90]. The value of Cr4 on this line when Cr2 = 0.6 is 2.6.

5.3 Kelvin-Helmholtz instability

The following coefficients fit the Kelvin-Helmholtz experiments and DNS best [Smi12, §3.3]:

C1 = 1.2 , C1v = 0.9 , Cr4 = 2.6 . (5.2)

5.4 Homogeneous variable density turbulence (HVDT)

John Schwarzkopf and I generated a wide variety of different configurations which fit the HVDT DNS
data reasonably well. “Reasonably well” means that the BHR3 b was overlapping then DNS b (which is

10

easy to do), that the BHR3 az is almost overlapping or overlapping the DNS az, and that the BHR3 K has
the same general trend as the DNS K. Perfect fit was not expected.

The coefficients with the best fit to the HVDT data were used as starting points for tweaking to fit the
Rayleigh-Taylor DNS data better.

The DNS data and BHR3 model can be compared in figure 7.

The single time scale version of BHR3 had poor fit for K — the turbulent kinetic energy greatly overpre-
dicted the DNS value. Here the RANS turbulent kinetic energy peaks with a slightly higher magnitude
than the DNS data and decreases after the peak in a way qualitatively like the DNS data.

Another possible set of coefficients is similar to the coefficients in table 2, but with the following
modifications:

Ca1 = 1.5 , Cb2 = 1.5 , Cap = 0.40 , C4v = 1.36 , C4 = 1.12 . (5.3)

Future work should consider trying these coefficients. With these coefficients the overall fit of the Reynolds
stresses, turbulent kinetic energy, b, and turbulent mass-weighted density are slightly worse than with
the coefficients in table 2, but not significantly so. The growth rate for the A = 0.5 case is slightly better
(α = 0.0431) but this can be improved in the table’s coefficients.

6 Conclusions

The two-scale model is a significant improvement in the development of BHR3. With two scales Rayleigh-
Taylor instabilities, the Kelvin-Helmholtz instabilities, and homogeneous variable density turbulence can
be modeled reasonably accurately. The BHR3 model has been validated against a wide variety of flows
for a turbulence model, and our hope is that it can be used as a general-purpose turbulence model.

Additionally, the isotropic turbulence decay coefficient was changed so that BHR3 fits the latest experi-
mental data.

6.1 Future directions

These coefficients can be applied to Richtmyer-Meshkov instabilities to further test their applicability in
general. Discrepancies can be addressed either in additional or improved turbulence models or improved
model coefficients.

6.2 Acknowledgments

I would like to thank Rob Gore and John Schwarzkopf for suggesting this research and their assistance in
explaining the intricacies of turbulence. I would also like to thank Jeffrey Smith for working with me this
summer and providing coefficients found by matching shear layer data. This work was performed during
the 2012 Los Alamos National Lab Computational Physics Student Summer Workshop. The financial and
logistical support the workshop provided is gratefully acknowledged.

11

References

[AS90] Malcolm J. Andrews and Dudley Brian Spalding. “A simple experiment to investigate two-
dimensional mixing by Rayleigh-Taylor instability”. In: Physics of Fluids A: Fluid Dynamics 2.6
(June 1990), pp. 922–927. issn: 08998213. doi: doi:10.1063/1.857652. url: http://pof.aip.
org/resource/1/pfadeb/v2/i6/p922_s1. (Cit. on p. 5).

[BKA10] Arindam Banerjee, Wayne N. Kraft, and Malcolm J. Andrews. “Detailed measurements of a
statistically steady Rayleigh-Taylor mixing layer from small to high Atwood numbers”. In:
Journal of Fluid Mechanics 659.1 (2010), pp. 127–190. doi: 10.1017/S0022112010002351. (Cit. on
pp. 2, 5, 6).

[BM90] James H. Bell and Rabindra D. Mehta. “Development of a two-stream mixing layer from
tripped and untripped boundary layers”. In: AIAA Journal 28.12 (1990), pp. 2034–2042. (Cit. on
pp. 6, 10).

[CC06] William H. Cabot and Andrew W. Cook. “Reynolds number effects on Rayleigh-Taylor instabil-
ity with possible implications for type Ia supernovae”. In: Nature Physics 2.8 (2006), pp. 562–568.
issn: 1745-2473. doi: 10.1038/nphys361. url: http://www.nature.com/nphys/journal/v2/
n8/full/nphys361.html. (Cit. on pp. 5, 6).

[CS74] Tuncer Cebeci and A. M. O Smith. Analysis of turbulent boundary layers. Applied Mathematics
and Mechanics 15. New York: Academic Press, June 1974. isbn: 0121646505. (Cit. on p. 4).

[DR04] P. G. Drazin and W. H. Reid. Hydrodynamic Stability. 2nd ed. Cambridge University Press, Sept.
2004. isbn: 0521525411. (Cit. on p. 2).

[Git+08] Michael Gittings et al. “The RAGE radiation-hydrodynamic code”. In: Computational Science
& Discovery 1.1 (Nov. 2008), p. 015005. issn: 1749-4699. doi: 10.1088/1749-4699/1/1/015005.
url: http://iopscience.iop.org/1749-4699/1/1/015005. (Cit. on p. 5).

[KF09] Thomas Kurian and Jens H. M. Fransson. “Grid-generated turbulence revisited”. In: Fluid
Dynamics Research 41.2 (Apr. 2009), p. 021403. issn: 0169-5983, 1873-7005. doi: 10.1088/0169-
5983/41/2/021403. url: http://iopscience.iop.org/0169-5983/41/2/021403. (Cit. on pp. 1,
9).

[Lau96] Brain E. Launder. “An introduction to single-point closure methodology”. In: Simulation and
Modeling of Turbulent Flows. Ed. by Thomas B. Gatski, M. Yousuff Hussaini, and John L. Lumley.
Oxford University Press, July 1996, pp. 243–310. isbn: 9780195106435. (Cit. on p. 10).

[Liv+09] D. Livescu et al. “High-Reynolds number Rayleigh-Taylor turbulence”. In: Journal of Turbulence
(2009), N13. doi: 10.1080/14685240902870448. url: http://www.tandfonline.com/doi/abs/
10.1080/14685240902870448. (Cit. on pp. 1, 4, 5).

[Liv12] Daniel Livescu. Aug. 2012. (Cit. on pp. 6, 7).
[LR07] Daniel Livescu and J. R. Ristorcelli. “Buoyancy-driven variable-density turbulence”. In: Journal

of Fluid Mechanics 591 (2007), pp. 43–71. doi: 10.1017/S0022112007008270. url: http://
public.lanl.gov/livescu/frames/jfm3.pdf. (Cit. on pp. 1, 8, 9).

[ML90] Mohsen S. Mohamed and John C. LaRue. “The decay power law in grid-generated turbulence”.
In: Journal of Fluid Mechanics 219 (1990), pp. 195–214. doi: 10.1017/S0022112090002919. (Cit. on
pp. 1, 9).

[Pop00] Stephen B. Pope. Turbulent Flows. 1st ed. Cambridge University Press, Oct. 2000. isbn:
0521598869. (Cit. on pp. 3, 4, 9, 10).

[PV05] Thierry Poinsot and Denis Veynante. Theoretical and numerical combustion. R. T. Edwards, Jan.
2005. isbn: 9781930217102. (Cit. on pp. 2, 3).

[RM94] Michael M. Rogers and Robert D. Moser. “Direct simulation of a self-similar turbulent mixing
layer”. In: Physics of Fluids 6.2 (Feb. 1994), pp. 903–923. issn: 10706631. doi: doi:10.1063/1.
868325. url: http://pof.aip.org/resource/1/phfle6/v6/i2/p903_s1. (Cit. on p. 6).

12

http://dx.doi.org/doi:10.1063/1.857652
http://pof.aip.org/resource/1/pfadeb/v2/i6/p922_s1
http://pof.aip.org/resource/1/pfadeb/v2/i6/p922_s1
http://dx.doi.org/10.1017/S0022112010002351
http://dx.doi.org/10.1038/nphys361
http://www.nature.com/nphys/journal/v2/n8/full/nphys361.html
http://www.nature.com/nphys/journal/v2/n8/full/nphys361.html
http://dx.doi.org/10.1088/1749-4699/1/1/015005
http://iopscience.iop.org/1749-4699/1/1/015005
http://dx.doi.org/10.1088/0169-5983/41/2/021403
http://dx.doi.org/10.1088/0169-5983/41/2/021403
http://iopscience.iop.org/0169-5983/41/2/021403
http://dx.doi.org/10.1080/14685240902870448
http://www.tandfonline.com/doi/abs/10.1080/14685240902870448
http://www.tandfonline.com/doi/abs/10.1080/14685240902870448
http://dx.doi.org/10.1017/S0022112007008270
http://public.lanl.gov/livescu/frames/jfm3.pdf
http://public.lanl.gov/livescu/frames/jfm3.pdf
http://dx.doi.org/10.1017/S0022112090002919
http://dx.doi.org/doi:10.1063/1.868325
http://dx.doi.org/doi:10.1063/1.868325
http://pof.aip.org/resource/1/phfle6/v6/i2/p903_s1

[SB92] Charles G. Speziale and Peter S. Bernard. “The energy decay in self-preserving isotropic
turbulence revisited”. In: Journal of Fluid Mechanics 241 (1992), pp. 645–667. doi: 10.1017/
S0022112092002180. (Cit. on p. 10).

[Sch+11] John D. Schwarzkopf et al. “Application of a second-moment closure model to mixing processes
involving multicomponent miscible fluids”. In: Journal of Turbulence (2011), N49. doi: 10.1080/
14685248.2011.633084. url: http://www.tandfonline.com/doi/abs/10.1080/14685248.
2011.633084. (Cit. on pp. 2–4, 6, 7, 9).

[Smi12] Jeffrey Smith. Turbulent modeling of plane mixing layer. Tech. rep. Los Alamos National Lab, Aug.
2012. (Cit. on pp. 6, 10).

13

http://dx.doi.org/10.1017/S0022112092002180
http://dx.doi.org/10.1017/S0022112092002180
http://dx.doi.org/10.1080/14685248.2011.633084
http://dx.doi.org/10.1080/14685248.2011.633084
http://www.tandfonline.com/doi/abs/10.1080/14685248.2011.633084
http://www.tandfonline.com/doi/abs/10.1080/14685248.2011.633084

7 Appendix A: Input deck

1

2 ! Modified from base case A=0.04 TAMU water channel data
3

4 !==
5 ! CONTROL
6 !==
7 secmax = 396000 ! How long run should go (in secs)
8 pname = "rt2s" ! all output files have this prefix
9

10 test_pname=’rt11_1v ’ ! 2d R-T
11 userparms (1)=1. ! rho -lo
12 userparms (2)=3. ! rho -hi
13 userparms (3)=1.e4 ! rho*cv
14 userparms (4) =2000. ! tev0
15 userparms (5) =0.4 ! GAMMA -1
16

17 mincellpe = 0 ! For parallel runs these two entries determine the min and
18 maxcellpe = 0 ! max number of cells on each processor. 0 turns it off
19 ncmax = 50000000 ! Maximum number of cycles (timesteps) to run
20 secmax = 27000
21 tmax = 2.6 ! Maximum time in simulation time units
22 tedit = 5.e-1 ! How often to print status information and restart dumps
23 ncedit = 1000 ! If not 0 how many cycles between status and restart dumps
24 modcyc = 1000 ! Status dumps only
25

26 kread = -1 ! Does nothing at -1, other #’s determine cycle to restart
27 uselast = .true. ! If restart dumps exists in this director , use the last one
28 ! Note: if this happens some initialization parameters
29 ! set later are skipped.
30 shortmodcyc = 10 ! Prints a short status message every cycle
31

32

33 !==
34 ! Hydro
35 !==
36 numrho = 4
37 hydro_version = 2
38 interface_option = 0
39

40

41 ! TURBULENCE MIX
42 !S0_max = 1.0
43 do_mix = .true. ! Turn on/off BHR
44 mix_model = ’BHR -3’
45 mix_t_start =0. ! Determine when model is turned on
46 mix_t_end =10.e8 ! Determine when model is turned off
47 turb_scale_0 = 0.1000 ! Determine initial length scale
48 turb_ske_0 = 0.25 ! Determine initial value for ke
49 const_scale = .false. ! Use a regular L-transport equation
50 use_mixscale =.true.
51 mix_b_cutoff = 1.0e-20
52 mix_numrho = 4
53 use_mixvisc_scale = .true.! uses both S eqns (must be false for BHR -2)
54 num_mixmat =2 ! Number of materials to be mixed
55 mixmat (1)=1,2 ! Allow both materials to mix
56 use_Rij_diff_coef =.true. ! .false. means it uses turbulent viscosity

14

57

58 !===
59 ! Coefficients for students to alter
60 !===
61 ! coefficients that affect variable density RT
62 mix_ca1 = 2.80 ! fit this
63 mix_cb2 = 1.80 ! fit this
64 mix_cap = 0.28 ! fit this
65 mix_c4v = 1.31 ! adjust to fit HVDT DNS data
66 mix_c4 = 1.00 ! adjust to get correct growth rate
67

68 mix_c_a = 0.30 ! adjust to get correct widths
69 mix_c_b = 0.30 ! adjust to get correct widths
70 mix_c_c = 0.56
71 mix_cr1 = 0.3
72 mix_cau = 0.0
73 mix_car = 0.0
74

75 ! coefficients that affect single phase KH
76 mix_c1 = 1.2
77 mix_c1v = 0.9 ! set from KH
78 mix_cr2 = 0.6 ! do not change , RDT , see Pope p. 423
79 mix_cr3 = 0.42
80

81 ! coefficients that affect both
82 mix_cr4 = 2.6 ! set from KH
83 mix_c2 = 1.77 ! do not change
84 mix_c2v = 1.77 ! do not change
85 mix_c_s = 4.2
86 mix_c_sv = 4.2
87

88 ! Additional coefs
89 mix_c3 = 0.0 ! leave at zero
90 mix_c3v = 0.0 ! leave at zero
91 !==
92 ! PLOTS
93 !==
94

95 !mix_plts = .true.
96 !mix_plts_ncedit = 250
97 !mix_plts_xmn = 0.0
98 !mix_plts_xmx = 0.25
99 !mix_plts_ymn =-80.0

100 !mix_plts_ymx = 80.0
101 !mix_plts_ncstart = 1
102 ! mix_plts_tmzdir = ’y’
103 ! mix_plts_tmzmat = 1
104 !mix_vfedge =0.01
105

106 ! pop
107 use_int_method_2 =.false.
108 use_tracers =.false.
109 num_mixreg =2 ! Number of material regions to be mixed (can be greater

than num_mixmat)
110 mixmat_order (1)=1,2 ! User must specify order of materials from r=0 to rmax
111 dopop=.true.
112 pop_dt =5.0e-2
113 dodmpxdt =.true.
114 !pop_cycle =100

15

115 npop_prob =1
116 pop_prob (1)=’mass’
117 npop_matl =6
118 !npop_matl =1
119 pop_matl (1)=’tev’
120 pop_matl (2)=’rho’
121 pop_matl (3)=’sie’
122 pop_matl (4)=’mix_2’
123 pop_matl (5)=’intpos_2_lo ’
124 pop_matl (6)=’intpos_2_hi ’
125 npop_mesh =20
126 pop_mesh (1)=’tev’
127 pop_mesh (2)=’rho’
128 pop_mesh (3)=’c01’
129 pop_mesh (4)=’c02’
130 pop_mesh (5)=’ten’
131 pop_mesh (6)=’a_1’
132 pop_mesh (7)=’mxb’
133 pop_mesh (8)=’tsc’
134 pop_mesh (9)=’ydt’
135 pop_mesh (10)=’prs’
136 pop_mesh (11)=’snd’
137 pop_mesh (12)=’a_2’
138 !JDS added the following pop_mesh
139 pop_mesh (13)=’Rnn’
140 pop_mesh (14)=’RS1’
141 pop_mesh (15)=’RS2’
142 pop_mesh (16)=’RS3’
143 pop_mesh (17)=’RS4’
144 pop_mesh (18)=’RS5’
145 pop_mesh (19)=’RS6’
146 pop_mesh (20)=’tvs’
147

148

149 !==
150 ! SETUP
151 !==
152 ! numfine = 7 ! See RAGE page
153 dxset = 0.125 ! size of zones in x and y (must be equal)
154 dyset = 0.125
155 imxset = 2 ! How many coarsest zones in x- and y-direction
156 jmxset = 2400
157 xzero = 0.0 ! minimum x and y values
158 yzero = -150.
159

160 ! resolutions
161 !!!!! l0 = 0.25
162 ! l1 = 0.125 ! 1000 micron
163 ! 2 0.0625
164 ! 3 0.03125
165 ! 4 0.015625 ! 156 micron
166 ! 5 0.0078125
167 ! 6 0.00390625
168 ! 7 0.001953125 ! 19 micron
169

170 !sizemat (1) = 2*0.001953125 ! Base level of zones for this material
171 !sizebnd (1) = 2*0.001953125 ! How fine to go at interfaces with other materials
172 sizerho (1) = 2*0.5 ! adapt if delta -rho is bigger than this

16

173 fvolpct = 0.00005 ! Change in fractional volume for use in determining if near
interf

174

175 !==
176 ! MATERIALS
177 !==
178 keos = 0 ! keos = 0 means analytic (gamma -law) EOS
179 nummat = 2 ! How many distinct materials are there?
180

181 ! ideal gases can have pressure and temperature equilibrium if
182 ! (g1 -1)*rho1*cv1*T = (g2 -1)*rho2*cv2*T; ie. rho*cv = const
183

184 matdef (1,1) = 0.0 ! I forget
185 matdef (16,1) = 0.4 ! gamma - 1.0
186 matdef (30,1) = 10000.0 ! C_v for material
187

188 matdef (1,2) = 0.0
189 matdef (16,2) = 0.4 ! gamma - 1.0
190 matdef (30,2) = 3333.333333
191

192

193 !tevbca =9.93875
194 !tevbcb =10.1225
195

196

197 !==
198 ! REGIONS
199 !==
200 numreg = 2
201

202 matreg (1) = 1 ! ambient , low -density material
203 rhoreg (1) = 1.0
204 tevreg (1) = 2000.
205

206 matreg (2) = 2 ! overlying higher -density material
207 rhoreg (2) = 3.0 !need to change matdef (30,2) also need to change rho -hi above
208 tevreg (2) = 2000.
209

210 typreg (2) = 13 ! region two is above the interface calculated
211 fitreg (2) = 1
212 loreg (2) = 2
213 hireg (2) = 2
214 coefreg (1,2) = 0.0000000 ! .01 Interface perturbation (amplitude)
215 coefreg (2,2) = 1.0 ! Box size (wavelength)
216 coefreg (3,2) = 0.0 ! No phase offset to yint= c1*cos(2*pi*x/c2)
217

218 ! reference instructions for doing the linear stability problem
219 ! To properly run a Rayleigh -Taylor incompressible problem , one has to set the
220 ! initial conditions to values that are self -similar. Thus both the interface
221 ! position and velocity should be perturbed , and v0 = gamma*z0, where gamma **2 = k*g*A
222 ! with k = (2*pi/L), g= gravity , and A=Atwood# = (rhohi -rholo)/(rhohi+rholo)
223 ! if box is size one , k = 2*pi. If g = 100/2pi =aprox= 15.915 , then gamma **2 = 10* sqrt(

A)
224 ! if Atwood = 0.36 (2.125:1) , then gamma = 6.0
225 ! AND , one wants the interface perturbation to be small (imperceptible) wrt box size
226

227 ! lambda k g A gamma a0 t amr lev yanaly ycalc
228 ! ------ ---- --------- ----- ------ ---- ---- ------- ------ -----
229 ! 1.0 2pi 100/2pi .36 6 .01 .038 .023

17

230 ! 1.0 2pi 10000/2 pi .36 60 .025 .019 5 .103 .06 -.08
231

232 ! This is the run in the repository.
233 ! 1.0 2pi 10000/2 pi .36 60 .025 .019 3 .103
234

235 rttype = 3 ! prestress and set velocities to self -similar initial conditions
236 rt_num =1
237 rt_coefa (1) =0.0 !0.00 ! v0 = gamma*z0, and coefreg (1,2) = 0.01
238 rt_coefb (1) =1.0 ! so k = 2*pi/1.0 . If box is not unit sized , rt_coefb=size
239

240

241 !==
242 ! Gravity/ Prestress
243 !==
244 grav_y = -1000.00 ! cm/s**2 ==> growthrate =60 /sec
245 do_grav_prestress = .false. ! neither 1d-x or 2-d spherical
246 !

!!

247

248 !ncmax = 15 ! Maximum number of cycles (timesteps) to run
249 sizemat (1) =2*0.0625
250 sizebnd (1) =2*0.0625
251 !kread = 10 ! Does nothing at -1, other #’s determine cycle to restart

18

8 Appendix B: Post-processing script

1 clear all
2 close all
3 more off
4

5 plotz = true;
6

7 rho_min = 1;
8 rho_max = 3;
9

10 locspec = 0.01;
11

12 # 1 --- z/h(t)
13 # 2 --- tke
14 # 3 --- a
15 # 4 --- mxb
16 # 5 --- R11
17 # 6 --- R33
18 # 7 --- rho (does not exist for DNS?)
19

20 # read in the DNS data
21 load -ascii "dns_data.csv"
22

23 zoht_dns = dns_data(:, 1);
24 tke_dns = dns_data(:, 2);
25 a_dns = dns_data(:, 3);
26 mxb_dns = dns_data(:, 4);
27 R11_dns = dns_data(:, 5);
28 R33_dns = dns_data(:, 6);
29

30 tke_smo = supsmu(zoht_dns , tke_dns);
31 a_smo = supsmu(zoht_dns , a_dns);
32 mxb_smo = supsmu(zoht_dns , mxb_dns);
33 R11_smo = supsmu(zoht_dns , R11_dns);
34 R33_smo = supsmu(zoht_dns , R33_dns);
35

36 tke_smoindx = find(tke_smo > (locspec * (max(tke_smo) - min(tke_smo)) + min(tke_smo)));
37 mxb_smoindx = find(mxb_smo > (locspec * (max(mxb_smo) - min(mxb_smo)) + min(mxb_smo)));
38 a_smoindx = find(a_smo > (locspec * (max(a_smo) - min(a_smo)) + min(a_smo)));
39

40 tke_smoindxmin = min(tke_smoindx);
41 mxb_smoindxmin = min(mxb_smoindx);
42 a_smoindxmin = min(a_smoindx);
43

44 tke_smoindxmax = max(tke_smoindx);
45 mxb_smoindxmax = max(mxb_smoindx);
46 a_smoindxmax = max(a_smoindx);
47

48 if plotz == true
49 figure (1)
50 plot(zoht_dns , tke_dns , ’b’)
51 hold on
52 plot(zoht_dns , tke_smo , ’r’)
53

54 figure (2)
55 plot(zoht_dns , mxb_dns , ’b’)
56 hold on

19

57 plot(zoht_dns , mxb_smo , ’r’)
58

59 figure (3)
60 plot(zoht_dns , a_dns , ’b’)
61 hold on
62 plot(zoht_dns , a_smo , ’r’)
63

64 figure (4)
65 plot(zoht_dns , R11_dns , ’b’)
66 hold on
67 plot(zoht_dns , R11_smo , ’r’)
68

69 figure (5)
70 plot(zoht_dns , R33_dns , ’b’)
71 hold on
72 plot(zoht_dns , R33_smo , ’r’)
73 end
74

75 for i = [45]
76 filename = [’data’ num2str(i) ’.csv’]
77

78 # read in the RAGE data
79 copyfile(filename , "tempcsv.csv");
80 load -ascii "tempcsv.csv"
81 unlink (" tempcsv.csv");
82

83 z = tempcsv(:, 1);
84 tke = tempcsv(:, 2);
85 a = tempcsv(:, 3);
86 mxb = tempcsv(:, 4);
87 R11 = tempcsv(:, 5);
88 R33 = tempcsv(:, 6);
89 rho = tempcsv(:, 7);
90 rho_older = tempcsv(:, 8);
91

92 # scale the RAGE data
93 f_v = (rho - rho_min) / (rho_max - rho_min);
94

95 integrand = f_v .* (1 - f_v);
96

97 ht = 6 * trapz(z, integrand);
98

99 scale = ht^2 / (ht / 500);
100

101 zoht = z / ht;
102 tke = 1e16 * tke / scale;
103 a = a / sqrt(scale);
104 mxb = mxb;
105 R11 = 1e16 * R11 / scale;
106 R33 = 1e16 * R33 / scale;
107

108 #matout = [zoht tke a mxb R11 R33 rho rho_older];
109 #size(matout)
110

111 #unlink (" output.csv");
112 #save -ascii "output.csv" matout
113

114 # earlier (t = 2.2 s) mix width
115 f_v = (rho_older - rho_min) / (rho_max - rho_min);

20

116

117 integrand = f_v .* (1 - f_v);
118

119 ht_older = 6 * trapz(z, integrand);
120

121 #t_new = 2.0;
122 #t_older = 1.7;
123 #t_new = 2.5;
124 #t_older = 2.2;
125

126 t_new = 2.1;
127 t_older = 2.0;
128

129 # calculate growth rate
130

131 alpha_dns = 0.0416; # for A = 0.5 (see p. 22 of Schwarzkopf , et al. (2011))
132 alpha = ((sqrt(ht) - sqrt(ht_older)) / (sqrt (500) * (t_new - t_older))) ^ 2;
133

134 errvec = [];
135

136 % peak -to-peak
137 errvec (1) = abs(max(abs(tke)) - max(abs(tke_smo))) / abs(max(abs(tke_smo)) + max(abs(

tke)));
138 errvec (2) = abs(max(abs(mxb)) - max(abs(mxb_smo))) / abs(max(abs(mxb_smo)) + max(abs(

mxb)));
139 errvec (3) = abs(max(abs(a)) - max(abs(a_smo))) / abs(max(abs(a_smo)) + max(abs(a)));
140

141 % integral
142 errvec (4) = abs(trapz(zoht , tke) - trapz(zoht_dns , tke_smo)) / abs(trapz(zoht , tke) +

trapz(zoht_dns , tke_smo));
143 errvec (5) = abs(trapz(zoht , mxb) - trapz(zoht_dns , mxb_smo)) / abs(trapz(zoht , mxb) +

trapz(zoht_dns , mxb_smo));
144 errvec (6) = abs(trapz(zoht , a) - trapz(zoht_dns , a_smo)) / abs(trapz(zoht , a) + trapz(

zoht_dns , a_smo));
145

146 % calculate the indices of the transition locations
147 tkeindx = find(tke > (locspec * (max(tke) - min(tke)) + min(tke)));
148 mxbindx = find(mxb > (locspec * (max(mxb) - min(mxb)) + min(mxb)));
149 aindx = find(a > (locspec * (max(a) - min(a)) + min(a)));
150

151 tkeindxmin = min(tkeindx);
152 mxbindxmin = min(mxbindx);
153 aindxmin = min(aindx);
154

155 tkeindxmax = max(tkeindx);
156 mxbindxmax = max(mxbindx);
157 aindxmax = max(aindx);
158

159 % width
160 errvec (7) = abs(1 - (zoht(tkeindxmax) - zoht(tkeindxmin)));
161 errvec (8) = abs(1 - (zoht(mxbindxmax) - zoht(mxbindxmin)));
162 errvec (9) = abs(1 - (zoht(tkeindxmax) - zoht(tkeindxmin)));
163

164 % growth rate
165 errvec (10) = 5 * abs(alpha_dns - alpha) / (abs(alpha_dns) + abs(alpha));
166 alpha
167

168 [i, sum(errvec)]
169 %errvec

21

170

171 if plotz == true
172 figure (1)
173 plot(zoht , tke , ’0’)
174 figure (2)
175 plot(zoht , mxb , ’0’)
176 figure (3)
177 plot(zoht , a, ’0’)
178 figure (4)
179 plot(zoht , R11 , ’0’)
180 figure (5)
181 plot(zoht , R33 , ’0’)
182 end
183 end
184

185 if plotz == true
186 figure (1)
187 title(’TKE’)
188 xlabel(’z / h(t)’)
189 ylabel(’K / \lambda ^2’)
190 #print -dpng K.png
191

192 figure (2)
193 title(’b’)
194 xlabel(’z / h(t)’)
195 ylabel(’b’)
196 #print -dpng b.png
197

198 figure (3)
199 title(’a’)
200 xlabel(’z / h(t)’)
201 ylabel(’a / \lambda ’)
202 #print -dpng a.png
203

204 figure (4)
205 title(’R11’)
206 xlabel(’z / h(t)’)
207 ylabel(’R11 / \lambda ^2’)
208 #print -dpng R11.png
209

210 figure (5)
211 title(’R33’)
212 xlabel(’z / h(t)’)
213 ylabel(’R33 / \lambda ^2’)
214 #print -dpng R33.png
215

216 hold off
217 end

22

2012 Computational Physics Student Summer Workshop: Final Reports

Development of an ICF Mix Code

(Erik Vold, mentor)

Development of ICF Mix Code

Jeremy A. Melvin, Sean T. Miller

August 15, 2012

Abstract

Our project over the summer of 2012 was to develop an ICF mix code. The code we developed is a
simplified arbitrary Lagrange Eulerian (ALE) method written from scratch in C++ and is designed to
run on unstructured grids. We have performed initial verification of our code, comparing to analytical
solutions of a Sod-like shock tube problem and the Sedov blast wave problem. The code was then
extended to 2D and verified with respect to the 1D solutions. We also show the capability of our code
to handle turbulent instabilities, such as Richtmyer-Meshkov (RM), which are commonplace within ICF
experiments. Finally we present an ICF-like initial condition setup in our 1D Lagrange Hydro code.

1 Introduction

For the computational student summer workshop of 2012 our project was to develop a numerical
method to accurately model inertial confinement fusion (ICF) implosions where the fuel and ablation
material interface instabilities can occur. We were advised to construct a traditional hydro numerical
method well established at the Los Alamos National Lab, called the Arbitrary Lagrangian Eulerian
(ALE) method. This method is well known for modeling solids, and we were interested in utilizing it
for modeling high energy density materials.
Inertial confinement fusion is one of the more simple forms of nuclear fusion. The concept is to
compress a quantity of fusable material, such as a mixture of deuterium and tritium, to the point where
the energy density and mass density allow ions to fuse. The most common compression methods in
practice today are ablation implosion methods using lasers and ion beams. Fusion becomes viable when
the compression of the fuel fulfills the Lawson criteria. The Lawson criteria estimates the required
confinement time of a fusion device for energy to be produced and is a ratio of the energy content of a
system to it’s power loss [2]:

nτc =
12kbT

Ech〈σv〉
(1)

where n is the number density of the fusing material, τc is the confinement time, kbT is the thermal
energy of the system, Ech is the energy added to the system by a single fusion event, and 〈σv〉 is an
averaged quantity used to express the probability of a fusion event occurring.
For inertial confinement fusion, this relation can be simplified since the confinement time is known to
be of the order of a characteristic length scale of the pellet divided by a characteristic ion flow speed in
the medium:

τc ≥
rpellet√
kbT
mi

(2)

where rpellet is the radius of the pellet and mi is the mass of the ion species. For a deuterium-tritium
reaction the criteria can then be simplified to [2]:

1

Mpellet

r2pellet
≥ 70

[
kg

m2

]
(3)

or

ρfuelrpellet ≥ 30

[
kg

m2

]
(4)

where Mpellet is the mass of the pellet, ρfuel is the compressed density of the deuterium-tritium
mixture, and rpellet is the compressed radius of the pellet. From this one can expect that a milligram
mass pellet of a deuterium-tritium mixture must reach 1000 times its initial density, or in terms of the
radius, a 10 fold compression [2].
The design and materials used to construct a pellet is dependent on the driver. For pellets undergoing
laser ablation implosions there are usualy at least two layers. The outside layer is the ablation layer
where the laser deposits energy causing the implosive shock. Ablation layers are usually made of a high
density plastic such as polyethylene or polystyrene doped with various chemicals to prevent preheating
of the fuel during the implosion. The internal layer is made up of the fuel mixture. A thin layer of
metal can also be found surrounding the pellet to inhibit the fusing plasma’s outward expansion during
detonation.
Laser ablation comes in two flavors, direct and indirect. The first and older method is known as direct
drive ICF where a collection of lasers are aimed at a pellet of fuel and pulsed to directly drive the
implosion. This method has lost momentum over time as beam alignment and consistent illumination
of the target is difficult with modern technology. The second and more modern method is known as
indirect drive. Here the pellet is placed inside an empty cavity, known as a hohlraum. The laser is then
pulsed into the cavity where it interacts with the interior walls to produce x-rays. These x-rays are
then directed toward the surface of the pellet to drive the implosion. While the x-ray production of the
hohlraum is theoretically able to produce a smoother illumination of the pellet’s surface, experiments
have shown that it is not yet enough to fuse the material.
This leads to the main issue with ICF: instabilities. Instabilities of the Richtmyer-Meshkov type are
generated from drive asymmetries and interface perturbations between the pellet layers, which grow
when the medium is shocked and reshocked. The turbulence generated from these instabilities redirects
much of the implosion’s energy away from ignigting the fuel. Modeling this turbulence is important to
further research into viable ICF experiments.
This leads to the need for a proper ICF mix code that can analyze the different physical plasma effects
generated during an implosion. The most influential effect include thermal diffusion and plasma-field
transport effects.
The purpose of our project was to setup a code that would be able to model these turbulent effects in
1, 2 and 3D accurately for high energy density plasmas.

1.1 Governing Equations

The Euler equations are the most basic form of fluid equations that can be used to describe an inviscid
flow implosion. The equations model the conservation of mass, momentum and energy within the fluid.
The equations can take many useful forms, but for our purpose we are interested in the convective
derivative form [3]:

Dρ

Dt
= −ρ∇ · ~u+ Sρ (5)

ρ
D~u

Dt
= −∇p+ Su (6)

ρ
De

Dt
= −p∇ · ~u+ Se (7)

where ρ is the density of the fluid, e is the specific internal energy of the fluid, ~u is the flow velocity of
the fluid, and p is the fluid pressure. The source terms Si are placeholders for plugins to the model such
as diffusion and laser ablation, which are set to 0 if unused. For example the laser ablation source term
is given by:

Se =
Plaser
Ms

(8)

where Plaser is the laser power and Ms is the total mass of all elements receiving energy from the laser.
Sources are added appropriately at the end of a time step. The operator D

Dt
is known as the convective

or Lagrangian derivative and can be expressed in terms of normal derivatives as D
Dt

= ∂
∂t

+ ~u · ∇. It
describes an evolution of the quantity in the frame of the moving fluid. The pressure p is given by the
ideal gas equation of state:

p = (γ − 1)ρe (9)

where γ is the adiabatic index or the ratio of the specific heat at constant volume to the specific heat at
constant pressure. For a monatomic gas, such as a high energy density plasmas, γ = 5

3
. In order to

model two fluids one must add another equation for the mass fraction ψ where the densities of the
separate fluids are given by ρ1 = ψρ, ρ2 = (1− ψ)ρ. The mass fraction evolves convectively as:

Dψ

Dt
= Sψ (10)

Given this mass fraction, under mixing conditions within an element one must calculate the correct
value for γ. This can be done by taking a heat capacity average within the element [6]:

γ =
ψρcv0γ0 + (1− ψ)ρcv1γ1
ψρcv0 + (1− ψ)ρcv1

(11)

where cv0 and cv1 are the specific heat capacities at constant volume for fluids 0 and 1 respectively.

2 Numerical Method

The numerical method used in this project is a simplified version of an arbitrary Lagrangian-Eulerian
(ALE) method. A Lagrangian solver is used to move the fluid around by manipulating the mesh, while
an Eulerian reconstruction stage follows to smooth tangles caused by the Lagrangian Phase. The idea
behind the method is to mix the ease and accuracy of the Lagrangian solver with the robustness of an
Eulerian solver. In our experience over the summer, we found it can be difficult to mix these two
stages, as they can interact in interesting ways.
We decided early on to run the ALE method on unstructured meshes since neither of the methods
explicitly required a structured grid. The Lagrangian solver is based on a staggered grid meaning the
density and specific internal energy terms are defined as constant within the element, while the
velocities are nodal values. In 1D this is simple to work with, however moving to higher dimensions
required knowing much more interconnectivity of the mesh in order to efficiently update the nodal and
elemental values. While the end product is more general and versatile, the unstructured grid made
debugging far more difficult and greatly slowed down development.
ALE methods are usually made up of three phases. First comes a Lagrangian phase that updates the
element and node quantities convectively with the mesh. The mesh is then analyzed and reconstructed
based on the desires of the designers in the remesh phase. The remap phase then moves the values
created in the Lagrangian phase to the newly constructed mesh.
To help the reader comprehend the complexity of each phase, we spent a single week of the ten weeks
given designing and coding the Lagrangian phase for 1 and 2 dimensions. The remesh stage was very

simplified and only took a day. The rest of the time was spent coding the remap phase and resolving
the interactions between the different phases. While the ALE method appears simple at first glance,
starting from a fully Eulerian finite element or finite volume method may have been easier to complete
in the alloted time.
The CFL condition for stability with this solver is given on an elemental basis. The shortest distance
across the element l is divided by the square root of the total specific energy. This is approximated by
the following condition:

dt = C
l

c̃s + ṽ
(12)

where C is the cfl limiter, usually set to C < 1. For an ideal gas the approximate sound speed within

an element λ is given by c̃s,λ =
√
γ pλ+qλ

ρλ
, where q is the artificial viscosity described in Section 2.2.2.

The approximate velocity term is given by ṽ =
√

2keλ where keλ is the specific kinetic energy within
the element. The specific kinetic energy of an element is given by the sum of the kinetic energies of the
control volumes within an element divided by the mass of the element. See Section 2.2.1 for more
information about control volumes.

2.1 Unstructured Grid

Th ALE solver we developed is based upon an unstructured grid. While the solver was created to
import a mesh from gmesh or cubit, for now it generates a structured mesh and utilizes it as an
unstructured mesh. There are three components to an unstructured mesh in this solver: elements, faces
and nodes. Any unstructured mesh can be described by node positions and the nodal connectivity of
the elements. Faces are utilized to increase the speed of the remap phase.
Only two geometric quantities, volume and surface area, are used in the calculations within this solver.
In order to capture cylindrical and spherical geometries in 1D, one only needs to modify the
calculations for the area and the volume. In 2D areas are found as the distance between two points
multiplied by the thickness of the block or cylinder h. Volumes are calculated by finding the surface
area of the polygon of interest and multiplying it by the thickness of the cylinder or box. The volume of
any polygonal prism extruded from the x− y plane is given by:

V =
h

2

n∑
i=0

xiyi+1 − xi+1yi (13)

where yn+1 = y0 and n is the number of nodes describing the face. Boundary conditions can be difficult
to implement for unstructured grids, especially when it it also a staggered grid. For this solver we
successfully constructed null-flux boundary conditions by fixing the normal component of the Lagrange
phase accelerations on the boundary nodes to zero. No-slip, null-flux boundary conditions are done by
setting the acceleration to zero at the boundary. Neither of these methods require ghost cells. We also
created null-element ghost cells where the internal values for density and specific internal energy were
set to zero. This last boundary condition acted as a boundary with vacuum space, which is useful for
modeling the outward motion of the ablation layer during an ICF implosion.

2.2 Lagrange Phase

The Lagrange phase used in this solver is based on the Pember and Anderson predictor corrector
method found in [3]. The following method is designed to model elemental values λ and nodal values ξ:

1. Construct the initial artificial viscosities qn for the elements. See Section 2.2.2
2. Construct the initial accelerations ~an (see Section 2.2.1), and update the predicted node positions
~x∗ and the predicted velocities ~u∗:

~anξ =

∫
∇(pn + qn)dV∫

ρndV
(14)

~u∗ξ = ~unξ + ∆t~anξ (15)

~x∗ξ = ~xnξ +
1

2
∆t(~unξ + ~u∗ξ) (16)

3. Construct the predicted element volumes V ∗, specific internal energies e∗, densities ρ∗ and
pressures p∗:

ρ∗λ = ρnλ
V nλ
V ∗λ

(17)

e∗λ = enλ − (pnλ + qnλ)(
1

ρ∗λ
− 1

ρnλ
) (18)

p∗λ = (γλ − 1)e∗λρ
∗
λ (19)

4. Construct the predicted node accelerations ~a∗, the new positions ~xn+1 and the new velocities
~un+1:

~a∗ξ =

∫
∇(p∗ + qn)dV∫

ρ∗dV
(20)

~un+1
ξ = ~unξ +

1

2
∆t(~anξ + ~a∗ξ) (21)

~xn+1
ξ = ~xnξ +

1

2
∆t(~unξ + ~un+1

ξ) (22)

5. Construct the new element volumes V n+1, specific internal energies en+1 and densities ρn+1:

ρn+1
λ = ρnλ

V nλ
V n+1
λ

(23)

en+1
λ = enλ − (

1

2
(pnλ + p∗λ) + qnλ)(

1

ρn+1
λ

− 1

ρnλ
) (24)

pn+1
λ = (γλ − 1)en+1

λ ρn+1
λ (25)

ψn+1
λ = ψn (26)

Currently there are no diffusion terms to modify the specific internal energy and mass fraction. There
are two unknowns stated above. The first is the integral quantity used in calculating accelerations and
the second is the artificial viscosity q. Both of these are best understood by first defining a control
volume for the node.

2.2.1 Nodal Control Volumes and Accelerations

The nodal control volume represents a portion of space in which ~u is considered constant. Figure 1
shows how the control volume may look in 1D and 2D. In the simple 2D case expressed in the figure,
the control volume is made up of 4 separate quadrilateral regions constructed of the central node
position nc two face midpoints ~pi and an element centroid ~ci. On more complicated unstructured grids
however, the control volume can contain as many of these sub-element quadrilaterals as required.

Figure 1: Nodal control volume used in code. Blue lines outline
elements, red lines outline nodal control volume, green lines des-
ignate faces where forces are calculated, ~ci represent geometric
centroids of elements, ~pi represent geometric midpoints between
nodes.

The nodal acceleration calculation is the core of any Lagrange solver. Since the governing equations are
inviscid at this time, there is no need to look into stress or viscosity tensors. The method we used can
be shown in an example with respect to Figure 1 in 2D where we apply the divergence theorem to the
acceleration integral quantity:

~aξ =

∫
∇(pn + qn)dV∫

ρndV
=

∮
(pn + qn)n̂ds∫

ρndV
(27)

The integration is done over each section of the control volume separately on each face where there is a
difference in pn + qn. Since the pressure and artificial viscosity are considered constant within each
element, calculations are only done on faces between elements. In the case of Figure 1 this integral
becomes:

~ac =

3∑
i=0

(pi−1 − pi + qi−1 − qi)Ain̂i

3∑
i=0

ρiVi

(28)

where p−1 = p3, Ai is the area of the control volume interface, Vi is the volume of the nodal control
volume within each element, and ~ni is the counterclockwise norm of the interface.

2.2.2 Artificial Viscosity

Artificial viscosity is a means to convert kinetic energy into internal energy in order to add dissipation
to a system. It acts in the same way that limiters act in purely Eulerian systems to enforce monotinicity
in the solution. By adding the proper amount of dissipation, no new unwanted extrema and oscillations

are added to the system. There are a few conditions that must be fulfilled by the artificial viscosity
which are explained very well in [1]. The most important of which is the artificial viscosity must only
be non-zero in elements that are compressing, but only if the compression is non-uniform, e.g. normal
to a shock front. The artificial viscosity used in this project is based on the edge centered artificial
viscosity in [1]. To generate the artificial viscosity along an edge connecting two nodes one must first
calculate the difference in velocity d~v1 and position d~x1 between the two nodes n1 and n2:

d~v1 = ~v2 − ~v1 (29)

d~x1 = ~x2 − ~x1 (30)

dv1 = |d~v1| (31)

dv̂1 =
d~v

dv1
(32)

dx1 = |d~x1| (33)

dx̂1 =
d~x

dx1
(34)

The artificial viscosity only needs to be calculated if the edge is undergoing compression under the
condition dx̂1 · dv̂1 < 0. To test if there is a uniform compression we must construct a van leer limiter
φv by comparing this edge to those around it. If we have four nodes 0,1,2,3 interconnected with three
edges then the van leer limiter is constructed in the following form:

r0 =

dv̂1·(~v1−~v0)
dx̂1·(~x1−~x0)

dv1
dx1

(35)

r1 =

dv̂1·(~v3−~v2)
dx̂1·(~x3−~x2)

dv1
dx1

(36)

φv = max(0,min(
r0 + r1

2
,min(2r0, 2r1))) (37)

In our project it is assumed that the shocks are all traveling along the grid. This marks our main
diversion from the method laid out in [1]. Instead of constructing the tensor form of the artificial
viscosity at each edge and using it to update the nodal accelerations, we instead mass average the edge
values for the artificial viscosities to create a cell centered artificial viscosity. Ideally, as expressed in [1]
and [5], one must measure the compression along the shock direction within the element to generate a
cell centered artificial viscosity. We tested both the tensor form and the element centered form, and
found that as long as the shock is traveling along the grid, then the difference between the two
solutions is minimal. In the future, this needs to be corrected such that the edge centered tensor form
of the artificial viscosity is used to update both the node accelerations and the specific internal energy.
In this project we used two different methods to calculate the scalar artificial viscosity quantity q. The
first is the well known scalar monotonic artificial viscosity qm, while the second is the more diffusive
Kuropatenko viscosity qk given in [1]:

qm = ρdv

(
1

4
(γ + 1)dv(1− φ2

v) +
1

2
cs(1− φv)

)
(38)

qk = ρdv(1− φv)

1

4
(γ + 1)dv +

√(
1

4
(γ + 1)dv

)2

+ c2s

 (39)

Figure 2 shows the difference between qm and qk for a simple Sod shock tube problem. Also shown is
what happens when artificial viscosity is not used, where it is apparent that the diffusion of the
artificial viscosity kills off oscillations. The other figures within this paper all utilize the scalar
monotonic artificial viscosity.

Figure 2: Comparison of the monotonic artificial viscosity, the
Kuropatenko artificial viscosity, and no artificial viscosity to the
exact solution with 100 elements.

Figure 3: Control volume edge transport mass.

2.2.3 Remap Phase

In the Remap phase, we base our algorithm off of the one set forth in David Youngs’ description of his
TURMOIL3D ILES solver [6] and the Remap algorithm described in Pember and Anderson [3]. The
method we use is a monotonically conservative advection based remap algorithm where you transport a
state variable through a boundary face into the desired target cell. It uses a 3rd order Van Leer
reconstruction of the face states, to determine the flux quantities [6].
The algorithm we use can be summarized as follows:

1. Calculate the Cell Edge Transport Volumes (δV). A Transport Volume is defined as the
volume created by connecting the nodes that define the face at the end of the Lagrangian step to
their new positions under the original (or remeshed) grid. We take this volume to always be
positive as it will be multiplied by a signed norm when its contribution to the cells that share the
face’s flux terms are calculated.

2. Calculate the Cell Edge Transport Terms. We flux across the cell faces the four quantities
representing the four conserved cell centered values.
(a) Transport Mass: δm = ρfδV
(b) Transport Partial Mass: δψ = ψfδm
(c) Transport Internal Energy: δe = efδm
(d) Transport Kinetic Energy: δke = kefδm
The Γf terms above represent state values at the faces. The algorithm is independent of the
method used to reconstruct the face states [3] and we choose here to use the 3rd order Van Leer
reconstruction described in [6].

3. Calculate the Control Volume Edge Transport Momentum. We define the control volume
edge transport mass to be the average cell edge transport mass for the four faces connected to the
face in the perpendicular direction. See Figure 3 for a graphical depiction.

(a) Control Volume Transport Mass: δmcv = 1
n

∑
faces

δm

(b) Transport Momentum: δui = ufi δm
cv

4. Calculate the Cell Fluxes.
A cell flux is the sum over the bounding faces of the cell of the transport term multiplied by a
sign (+1 or −1). The purpose of the sign is to determine if it is an outward or inward flux and
thus its contribution to the new cell value. We determine the sign through a vector projection of ~a
onto ~b where ~a is the vector pointing from the Lagrange grid’s face center to the remap grid’s face

Figure 4: Cell flux contribution based on face positions.

center and ~b is the vector pointing from the cell’s centroid to the neighbor cell’s centroid through
the face in question. Figure 4 provides a graphical depiction of this. All we are concerned with is
the sign of the projection and thus our sign can be calculated simply as sign(~a ·~b). We denote the
total flux for a cell as Fm, Fphi, Fe and Fke for mass, partial density, specific internal energy and
specific kinetic energy respectively.

5. Calculate the New Cell Values. The new cell value is calculated via a simple advection
equation. We take the Lagrangian conserved quantity and add the Cell Flux then divide by the
necessary variables to turn the new remapped conserved quantity into the state value of interest.
We use the remap of density as a typical example of this.

ρremap =
Vlagρlag + Fm

Vremap
(40)

6. Calculate the Control Volume Fluxes. This follows as a direct analog of 4 to the control
volumes, with ~a as the vector pointing from the Lagrange grid’s face center to the remap grid’s
face center and ~b as the vector pointing from the node’s coordinate to the neighbor node’s
coordinate through the face in question.

7. Calculate the New Node Values. This follows as a direct analog of 5 with the control
volumes associated with a node.

ui,remap =
cmlagui,lag + Fui

cmremap
(41)

Where we define cm to be the sum of the masses in each piece of the control volume for the given
node.

8. Enforce Total Energy Conservation*. We denote this with an asterisk as we find that with
strong shocks, enforcing full energy conservation causes large oscillations that can cause internal
energy to break monotonicity and eventually become negative, thus crashing the algorithm. A
thorough rethinking of this step from an analytical point of view, should allow for full energy
conservation to be achieved even with strong shocks. For now, we instead define two types of
energy conservation as follows:
(a) Full Conservation In full conservation we enforce total energy (V ρE = V ρe+ V ρke)

conservation by modifying the post-remap internal energy value based on the method
described in [3]. We repeat the step here for completion.

kecalcremap =
1

Vremapρremap

∑
i∈nodes

1

2
(~u · ~u)cmi (42)

where cmi = the mass of the piece of the control volume for the node that is contained within
the element of interest and then

eremap = eremap + (keremap − kecalcremap) (43)

(b) Monotonicity Preserving Partial Conservation In monotonicity preserving partial
conservation of total energy, we follow the same method as above except that we cap the
change in eremap that can occur by ensuring that the change preserves the monotonicity of
that element within its surrounding elements. Thus we identify the monotonic behavior of
the element at the end of the Lagrangian stage and classify it into one of three cases.

i. Element has the largest elag of all its neighbors:
In this case we restrict the gain in energy of eremap during the conservation step to not
exceed the value of elag.

ii. Element has a bounded elag on either say by its neighbors:
In this case we restrict the gain in energy of eremap during the conservation step to be
restricted between the max eremap of it’s neighbors and the min eremap of it’s neighbors,
before they are adjusted during the conservation step.

iii. Element has the smallest elag of all its neighbors:
In this case we restrict the loss in energy of eremap during the conservation step to not
fall below the value of elag.

Using this method, we find that the code is stable during strong shocks. In addition, we find
that while from time step to time step energy is not conserved, it tends to fluctuate in both
directions, usually within at most 1%− 2% of the total energy for the system.

2.2.4 Remesh Phase

The remesh phase used in this project was designed for remeshing ICF implosions where the shock
travels primarily along the grid. The idea was to follow the Lagrangian updates to the node positions,
but to smooth out the mesh by averaging x (r) values and enforcing equally spaced y (θ) values. This
would reserve the accuracy of the Lagrange phase while minimizing remap fluxes when running
simulations on perturbed interfaces or with asymmetric drivers. This is the only section of the solver
that requires a structured grid as a base to the unstructured grid in order to average the x (r) values
and properly space the y (θ) values. The remeshing stage can become slow for larger grids, and due to
some constraints for the remap phase at this time, must be run every step if the option is turned on.
This results in extra simulation time, but no remapping in steps before the shock passes through the
discontinuity, preserving the ALE nature of the code.

3 Results

3.1 1D simulations

3.1.1 Shock Tube

The Sod shock tube problem in 1D is a very simple means of testing a hydro code. We ran a simple 1D
shock tube with initial conditions: γ = 1.4, ρleft = .1, ρright = 1, x0 = 0, x1 = 1 with n = 100, 500, 1000.
Figure 5 shows a comparison of the Lagrange phase only, while Figure 6 compares the Lagrange plus
remap phase at time t = 0.25. Total energy conservation in the remap phase was used to generate these
solutions.
As the figures show, the simulation seems to converge to a solution, and if we compare to an analytical
solution using an L1 norm, as seen in Figure 7, we see that both the Lagrange only and Lagrange plus
remap methods seem to converge at order 1. More analysis will need to be conducted to identify the
cause of the first order convergence, since second order convergence would be expected in a
predictor-corrector method.

3.1.2 Interacting Blast Wave

The interacting blast wave problem was our first forray into strongly shocked fluids. The initial
conditions for this blast wave is given by: γ = 1.4, ρ = 1, pl = 1000, pm = 0.001, pr = 100. The left
interface is at xl = 0.1 and the right interface is at xr = 0.9.

Figure 5: Comparison of 1D Sod shock tube solutions with La-
grange only.

Figure 6: Comparison of 1D Sod shock tube solutions with La-
grange and remap phases.

Figure 7: Verification of Sod shock tube problem in 1D for La-
grange only and Lagrange plus remap. Convergence rates appear
to be of order 1.

Figure 8 and 9 shows the blast wave at time t = 0.038 for n = 100, 500, 1000 with γ = 1.4 for Lagrange
only and Lagrange plus remap respectively. Figure 10 shows the literature results from [3] which shows
that the shocks are traveling and interacting appropriately. As our remap phase has issues with over
compensating for total energy conservation, the remapped blast wave plots were run with partial
energy conservation enabled.

3.1.3 Sedov Problem

The Sedov problem models a outward propagating wave of energy. The initial conditions for this
problem is to set the specific energy in all elements to 0 and add enough specific internal energy in a
single cell such that the total energy is E = 1. This means that the specific internal energy added to
the element is dependent on the geometry and discretization of the grid. This problem was run in
cylindrical and spherical geometry for n = 100, 500, 1000 and γ = 1.4. The results at time t = 0.05 are
seen in Figures 11 and 12 for cylindrical and spherical geometries respectively.

3.2 2D Simulations

We use the 2D version of our ICF mix code to produce two-dimensional results in cartesian and
cylindrical (polar) coordinates. In two-dimensions, we encounter new challenges that are not present in
our 1D simulations. Most of these are resolved through careful extension of our 1D algorithm to
multiple dimensions. We therefore discuss only the issue of potential mesh tangling, that arises when
moving from 1D to 2D.

3.2.1 Mesh Tangling

In 1D simulations, we focus mainly on a strictly Lagrangian solver. This makes the most sense in 1D,
as it is simplest algorithm and removes some of the numerical diffusion inherent to Eulerian methods.
We present results for remapped simulations simply for verification purposes of the our remap

Figure 8: Comparison of 1D interacting blast wave with Lagrange
only.

Figure 9: Comparison of 1D interacting blast wave with Lagrange
plus remap.

Figure 10: Literature values from [3] for interacting blast wave.

Figure 11: 1D Sedov problem for cylindrical geometry with La-
grange phase only compared to exact solution.

Figure 12: Literature values for 1D Sedov problem for spherical
geometry with Lagrange phase only compared to exact solution.

algorithm. However, in 2D, with non symmetric initial conditions, such as those found in ICF
experiments, using strictly Lagrangian methods results in severe mesh tangling, which causes the
algorithm to fail. This is an expected phenomenon as the non-symmetric initial conditions lead to
Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities causing turbulent mixing.
Therefore we utilize the remap and remesh algorithms to adjust the mesh at the end of the Lagrangian
phase back to a more regular mesh. This allows us to avoid the issues associated with mesh tangling
from a purely Lagrangian algorithm. We emphasize this point in Figure 13. Here we present a pressure
balanced density discontinuity in 2D, with the more complicated addition of a perturbation in the
interface. By passing a shock through the interface we generate an RM instability. In the top frame, we
can see that the Lagrangian phase does indeed encounter mesh tangling and is not capable of
completing the simulation. In the middle frame, we present the same initial conditions with the remap
phase turned on. We show the mesh at the the same simulation time and see that we have no issues of
mesh tangling and that the simulation can easily proceed past this point and complete. Finally, in the
bottom frame, we show the same simulation at the same time, utilizing both the remap and remesh
phases. The advantage of the remesh phase is to minimize the fluxes during the remap phase thus
reducing numerical diffusion and increasing resolution around the shock interface, while also removing
all potential tangling.

3.2.2 Verification of 2D Sod Shock Tube

We present the 2D extension of the 1D Sod Shock Tube problem presented in Section 3.1.1. This is a
2D problem which has symmetric initial conditions along the y-axis, thus should maintain perfect
symmetry throughout the simulation and should mimic the 1D results. In Figure 14 we show both the
2D simulation at the t = 0.25 for nx = 2000, ny = 20 to emphasize the symmetry and a 1D projection
of our 2D code compared to the exact solution. We see that we are able to correctly maintain the
symmetry in the initial conditions a well as high accuracy.

Figure 13: a) Example of a tangled mesh after a Lagrangian phase
across a perturbation. b) Example a remap phase after the La-
grange phase back to the initial mesh. c) Example of remesh phase
to an averaged mesh as described in Section 2.2.4.

Figure 14: a) 2D sod shock wave with nx = 2000, ny = 20 at time
t = 0.25. b) Comparison of 2D solution projected on x axis to the
exact solution.

3.2.3 RM Instability

We present an RM instability problem as run through our code. We first set up an initial preturbed
density interface that is contained in pressure equilibrium. We then pass a shock through it, at which
time an RM instability begins to grow. Bubbles (Light Density into Heavy Density) and Spikes (Heavy
Density into Light Density) begin to form. The shock then bounces back and reshocks the instability
growth, at which point the mixing starts to become chaotic. In Figure 15 we present an RM instability
in Cartesian coordinates at various times during the simulation. We feel that this accurately mimics
the proper growth behavior shown in other simulations and maintains proper symmetry for the
majority of the time. The few anomalies in the growth behavior, we believe to be due to the
coarse-grained definition of our initial perturbation. A more smoothly defined initial perturbation we
believe will result in normal growth behavior. A more in depth study of our results would need to be
conducted to determine if our growth rate agrees with that proposed by Richtmyer.

3.3 ICF

We present here a 2D hydro simulation with initial conditions that mimic an ICF implosion as
prescribed in [4]. We use an internal mixture of deuterium-deuterium (DD) and an external species of
Polyethylene (CH). The density of the outer plastic is ρCH = 931.7

[
kg
m3

]
while the DD mixture has an

initial density of ρDD = 3.344
[

kg
m3

]
. The entire pellet is under pressure equilibrium at p = 2 · 106 [Pa].

We use a monatomic ideal gas γ = 5
3

and mimic the laser by adding energy into the last two cells of the
domain smoothly over 1 · 10−9 [s]. The overall strength of the laser is set as Plaser = 20 · 1012 [W] with
an absorption factor of 20%, implying a total energy gain over the course of the laser activity of
Elaser = 4 · 103 [J]. This creates a strong shock with a specific internal energy discontinuity of
approximately 107 : 1. This is run in a cylindrical 2D geometry with a domain size of

0 ≤ r ≤ 0.425 · 10−3 [m] and 0 ≤ θ ≤ π

8
. All boundaries have reflective boundary conditions. In Figure

?? we show a 1D spherical ICF implosion as compared to a 1D lagrangian ICF implosion run in the
HELIOS code [4]. We can see that even with a purely hydro algorithm, we can still obtain a
compression factor of around 10 and that our results seem to mimic the timing that the HELIOS code
shows. We believe that the addition of plasma physics models and other non-hydro requirements for
ICF simulations will improve the accuracy of our ICF results.

Figure 15: Top: Initial Conditions for an RM growth. Middle:
Bubble and Spike development during the initially shocked inter-
face. Bottom: Reshocked interface.

Figure 16: a) 1D spherical ICF Lagrange only. b) 1D spherical
ICF from HELIOS code [4].

4 Conclusion

We began with a large potential scope of building an ICF mix code. Starting from scratch we built a
staggered grid Lagrangian with remap hydro solver over an unstructured grid. We also built in a
remesh step, which has the potential to expand our code into a full ALE algorithm. In addition, despite
the added complication of an unstructured grid, we believe this gives our code a very generalized ability
and thus can be extended to a lot of geometries outside of the typical ICF. We have performed initial
verification of our code, comparing to analytical solutions of a Sod-like shock tube problem and a code
comparison to the interacting blast wave problem described within [3]. We then extend our code to 2D
and present verification as a comparison to the 1D problems described above. We also show the
capability of our code to handle turbulent instabilities that are commonplace within ICF experiments
and simulations. Finally, we show an ICF-like initial condition setup and run our hydro solver on this
problem. We find that we have a solid hydro code base that is ready to be extended via plasma physics
models and other ICF simulation requirements.
While we may have only briefly reached the ICF part of this project, we feel that our code and the
algorithm described within this paper are a good jumping off point for plasma physics models,
radiation, diffusion models and anything else that may be necessary to accomplish an accurate ICF
simulation. In addition, there are still some undiagnosed bugs still within the hydro code we have
written. In particular, we recommend looking into the artificial viscosity for multiple dimensions, the
remesh algorithm and potential asymmetric numerical errors that occur within symmetric problems, as
the main places of incompleteness in our Hydro code.
An observation we have made during this project are that a staggered-grid Lagrangian solver
introduces a lot complication when it comes to conservation of energy. A quick search of the literature
shows that there are many cell-centered Lagrangian methods out there and perhaps one of these would
be a more successful implementation than our method. We do not disclose any particular references, as
we have not done this research ourself. While unstructured grids are beneficial when dealing with
complicated geometries, for this project, with its scope of only ICF mixing, this was probably an
unnecessary step. While it is certainly beneficial now that it has been implemented, we figure the extra
time spent on this aspect, prevented us from getting to a lot of the ICF plasma physics modeling. Our
code has a good structure for allowing multi-threading and parallelization. This should be a priority if
this code is going to be utilized further, as any realistic grid sizes will need a parallel option. As for
total energy conservation, we believe this issue to be a byproduct of the staggered grid approach which
leaves us with different control volumes for kinetic and internal energies. If the code is modified to have
cell centered velocities or a lot of care is put into the conservation step, we believe that this issue is
resolvable.

Acknowledgments

We would like to thank our mentor Dr. Erik Vold for his advice and help in designing the solver. We
would also like to thank Dr. Scott Runnels for setting up this workshop and running it so smoothly.
Finally we would like to thank UNM and the Los Alamos Nation Lab for hosting the workshop.

References

[1] M. J. Shashkov E. J. Caramana and P. P. Whalen. Formulations of artificial viscosity for
multi-dimensional shock wave computations. Journal of Computational Physics, 144:70–97, 1998.

[2] Denis Keefe. Intertial confinement fusion. Annu Rev. Nucl. Part. Sci., 32:391–441, 1982.
[3] R. B. Pember and R. W. Anderson. A comparison of staggered-mesh lagrange plus remap and cell

centered direct eulerian godunov schemes for eulerian shock hydrodynamics. NECDC, 2000.
[4] Erik Vold and Leslie Welser-Sherrill. Momentum transport and associated scale lengths in an icf

plasma. Presented at: 2012 HED Plasma and Fluids, 2011.

[5] Mark L. Wilkins. Use of artificial viscosity in multidimensional fluid dynamic calculations. Journal
of Computational Physics, 36:281–303, 1980.

[6] David L. Youngs. The lagrangian remap method. Implicit Large Eddy Simulation - Computing
Turbulent Fluid dynamics, pages 147–153, 2007.

2012 Computational Physics Student Summer Workshop: Final Reports

Verification of Shocks in Plasmas

(Tom Masser, mentor)

Verification of Planar Shocks through Dense Plasma

William A. Hoey

10 August 2012

Abstract

In this study, a set of two-temperature models for planar, steady-state shock waves in fully-ionized plasmas

were addressed as potential verification cases for a key laboratory multiphysics code, xRage. The linear

model of Masser, Wohlbier, and Lowrie [2011] and the nonlinear model of Jaffrin and Probstein [1964]

were employed. Each model reduces to pair of coupled, autonomous ordinary differential equations, i.e. a

dynamical system. The models are differentiated by their simplifications; most significantly, the linear model

incorporates constant parameters for the election-ion coupling term, γei, and the thermal conductivity term

κe. The nonlinear model allows for variable γei and κe as functions of density and electron temperature,

such that a unique solution exists for a given initial state. Integration codes for both models were written

with adaptive-stepping versions of the explicit Euler, fourth-order Runge-Kutta, and fourth-order Adams-

Bashforth numerical methods, and a wide variety of initial parameters were evaluated. Of particular interest

were the boundaries in parameter space between discontinuous and continuous solutions; for the nonlinear

model as a function of M0 alone, and for the linear model as a function of a dimensionless parameter R ∝ κeγei

in addition to the ion charge state and initial Mach number. The relations employed for conductivity and

coupling terms by the nonlinear reduced model and within xRage were addressed in depth. Ultimately,

results were compared between the nonlinear and linear models, and to the evolved steady-states of inherently

transient solutions within xRage. Expressly considered were the phase space diagrams from each model, as

well as the plots of shock wave temperature versus displacement and the parameter space transitions from

continuous to discontinuous solutions.

Chapter 1

Introduction

Studies of verification and validation are useful in measuring the performance of a piece of code, and in
quantifying its success in satifying its stated purposes. Here we consider the process of verifying xRage,
a flagship laboratory hydrodynamics code, in a case of multi-temperature plasma physics. In verification,
the solutions produced by xRage for a test case are compared against semi-analytic solutions of coupled,
autonomous systems of ordinary differential equations that comprise reduced models of the code’s three-
temperature plasma physics package. The goal of this comparison was to determine whether xRage was
properly solving its set of governing equations for such flows.

Two reduced models were examined: that of Jaffrin and Probstein[2] (released in 1964), and that of Masser,
Wohlbier, and Lowrie[4] (released in 2011). These models originated from differing sets of governing partial
differential equations, but followed a similar process of reduction to arrive at their final forms. That reduction
process is discussed in the second chapter of this report.

The test problem addressed by xRage was the three-temperature Shafranov problem in one dimension. In
this problem, either end of the domain is set to its corresponding equilibrium condition – the known upstream
and downstream values – and a Heaviside step function produces a discontinuous transition between those
equilibria at a point in the domain. There follows a relaxation in time to the steady-state solution.

The reduced models began as sets of partial differential equations in time and space, but were stripped of
time dependence in an effort to transition into a Galilean reference frame moving at the shock velocity. This
allowed their solution as ordinary differential equations for steady-state shock conditions. Therefore, the
reduced models ought to produce representations of the equilibrium state to which the xRage solution will
relax in time.

1.1 Models

• 1-D Galilean Steady-State: Jaffrin & Probstein [1964]. ‘Nonlinear.’

– For Mach numbers below 2.0, this is two-layer model incorporating a large-scale thermal shock
and a small-scale ion shock. In this analysis, the large-scale shock is of most significance, as its
reductions are applicable across the vast majority of the domain. The ion shock model concerns
the resolution of features across the shock face, on the order of a few mean free paths in thickness.

– Each layer reduces to two ordinary differential equations, from the original set of five partial
differential equations in electron and ion variables.

– The electron-ion coupling coefficient and the electron thermal diffusivity, γei and κe respectively,
are treated as functions of density and electron temperature. This results in a unique solution for
a given upstream (initial) state, specfied by Mach number.

– The flow’s characteristic ion charge state, Z, is assumed to be 1.

1

• 1-D Galilean Steady-State: Masser, Wohlbier, & Lowrie [2011]. ‘Linear.’

– This is a one-layer model composed of two ordinary differential equations, likewise drawn from a
governing set of PDEs. Ion temperatures across the shock face are taken as discontinuous.

– The electron-ion coupling coefficient and the thermal diffusivity are taken as free parameters. They
are linked by a dimensionless ratio of length scales, R, which is proportional to their product.

– Furthermore, the model is expanded to incorporate ion charge states beyond that for monatomic
hydrogen; Z is likewise a free parameter.

– Therefore, solutions are dependent on the choice of Z, γei, and κe in addition to the upstream
Mach number.

• 1-D Fully Transient: xRage

– This multiphysics package integrates its governing PDEs without the simplifications of the two
reduced models. A wide range of materials, and thus ion charge states, are available for study.
There are expressions of varying complexity available for representing both γei and κe, including
the choice of constant coefficients. Solutions are by default transient, and so comparisons to the
reduced models are conducted after the shock has relaxed to its steady-state structure.

– As this model is not formulated in dimensionless units, it is necessary to specify an initial temper-
ature and initial density (or number density) in addition to the Mach number. Initial velocity is
also required, but may be calculated from those parameters given the equations of state employed
in the reduced models.

1.2 Solution of the Reduced Models

1.2.1 Masser, Wohlbier, and Lowrie [Linear]

A pair of coupled and autonomous equations, in dimensionless electron temperature and dimensionless
density, were derived from the governing set of partial differential equations. That set was comprised of Euler
conservation relations for mass and momentum, in addition to an energy equation with an electron conduction
term, and an electron advection equation with coupling and conduction terms. The independent variable
in each reduced ordinary differential equation was the scaled displacement. Integration was performed with
explicit techniques, namely the Euler method and variable-stepping versions of the fourth order Runge-Kutta
and Adams-Bashforth methods. Based on the potential for discontinuous solutions, the process of integration
differed with the initial Mach number.

First, downstream conditions were calculated from the initial, upstream values. Critical Mach numbers
were then calculated, bounding the region in parameter space in which either continuous or discontinous
solutions might occur – in which neither the presence nor absence of embedded hydrodynamic shocks could
be guaranteed. Initial Mach numbers that were less than the lower bound of that region are known to produce
continuous solutions in all cases, while Mach numbers above the high bound are likewise expected to produce
discontinuous solutions in all cases. However, Mach numbers bounded by the critical values produce solutions
of indeterminant form. As this model allows for the user input of its parameters, establishing an exceptionally
high value for electron-ion coupling effectively binds the two constituent temperatures together and promotes
continuity at high Mach numbers.

Low Mach number solutions, those guaranteed continuous, were simplest to solve. It was demonstrated in
the 2011 paper that the intial, upstream equilibrium point was a saddle in phase space for all Mach numbers;
the downstream point was shown, however, to be an attractor for Mach numbers below the lower-bound
critical value. Integration in phase space must proceed outward from a saddle, as to integrate into a saddle
point is to invite numerical error to rapidly dominate the solution.

2

Chapter 2

Derivation of a Reduced 2T Model

The derivations of the linear and nonlinear models are analogous, barring the treatment of variable κe and
γei terms in the nonlinear model. Here, we demonstrate the reduction of a set of governing equations for one-
dimensional, fully-ionized, single-material flow in the linear case. A system of partial differential equations
in time and space is proposed:

∂tρ + ∂x(ρu) = 0, (2.1)

∂t(ρu) + ∂x(ρu2 + P) = 0, (2.2)

∂t(ρE) + ∂x[u(ρE + P)] = ∂x(κe∂x Te), (2.3)

∂t(ρee) + ∂x(ρuee) + Pe ∂xu = γei(Ti − Te) + ∂x(κe ∂xTe). (2.4)

Here, E denotes total specific material energy, as E = e + u2

2
. Represented in these equations are the

familiar inviscid Euler expressions for conservation of mass and momentum, in addition to a form of the
energy equation that admits an electron heat flux qe = −κe ∂xTe. The final equation models electron
advection; after application of fundamental thermodynamic relations, it resolves to the form

ρTe

D(Se)

Dt
= γei(Ti − Te) + ∂x(κe ∂xTe), (2.5)

in which Se represents the specific electron entropy. It is important to note that, contrary to the electron
temperature, Se may be discontinuous across shock surfaces. In the limit as γei and qe approach zero, we
assume that the electron entropy jump also goes to zero.

2.1 Equation of State

Both the linear and nonlinear models assume an ideal gas equation of state:

P = ρe(γ − 1), (2.6)

e = e (ρ, T) . (2.7)

This allows us to make certain assumptions as to the relations between ion and electron properties. These
relations are dependent on the ion charge state Z, a measure of average particle ionization. Note that, in the
derivation of the nonlinear model, Z is taken to be 1; this value corresponds to monatomic hydrogen. Both
the linear model and xRage allow for the specification of ion charge state. The ‘Z-split’ of the equation of
state occurs as follows, and is replicated by default in xRage’s 3T package;

Pe =
Z

Z + 1
P (ρ, Te) , (2.8)

ee =
Z

Z + 1
e (ρ, Te) , (2.9)

3

Pi =
1

Z + 1
P (ρ, Ti) , (2.10)

ei =
1

Z + 1
e (ρ, Ti) . (2.11)

2.2 Shock Structure

Anticipating the formation of embedded shocks between the upstream and downstream equilibria, we apply
a Galilean transformation to the system of governing equations, by which the shock speed is set to zero. A
standard set of Rankine-Hugoniot conditions apply across the jump[3][1]:

(ρu)′ = 0 (2.12)

(ρu2 + P)′ = 0 (2.13)

((ρE + P)u)′ = (κe

dTe

dx
)′ (2.14)

An additional expression for jump conditions across the shock is required, since our model adds considerations
of electron heat conduction and advection to the traditional equations. We can assume an isentropic jump
in electron quantities at embedded hydrodynamic shocks.

Following the analysis of Zel’dovich and Raizer, the ideal gas law may be combined with the steady-state,
Galilean invariant versions of the governing equations to yield expressions for the temperature and derivative
of the electron temperature. Ultimately, the electron specific heat at constant volume is taken to be constant,
and an equation relating ion and electron temperatures is derived:

Ti − Te = (Z + 1)(T − Te). (2.15)

The jump conditions, governing PDEs, and equation of state may now be combined and non-dimensionalized.
An expression is required to evaluate the electron entropy term, and Se = Cv,e log [Peρ

−γ] is employed.
The system is finally reduced to two coupled and autonomous ordinary differential equations:

dΘe

dζ
= (1 − η) (η − η1), (2.16)

dη

dζ
= −η R

Z + 1

Z

Θe − Θc2
e

Θe − Θ1
e

. (2.17)

The independent variable, ζ, is proportional to displacement along the x-axis of the one-dimensional system.
The dependent variable η represents the dimensionless ion density and velocity, as electron mass is neglected
in this model; likewise, Θe denotes the dimensionless electron temperature. The Θc1

e and Θ2

e terms represent
quadratic critical curves.

4

Chapter 3

Verification

3.1 Methods

• It can be shown that, for solutions to either reduced model without embedded hydrodynamic shocks,
the upstream equilibrium point will always be a saddle point in phase space while the downstream
equilibrium will be an attractor. Therefore, for continuous solutions, integration was performed from
upstream to downstream equilibria to aid in numerical stability.

• For discontinuous solutions, or continuous solutions for which the initial Mach number is above a well-
defined critical value, it is necessary to integrate outward from both the upstream and downstream
equilibria, as each is a saddle point. In such cases, continuity in electron temperature is enforced via
the jump conditions.

• It is of particular interest to examine solutions on the boundary between continuous and discontinous
behavior. For the nonlinear model of Jaffrin and Probstein, this boundary was observed to occur
for systems with initial Mach numbers of greater than 1.19. In the linear model, the capacity for
modification of coupling and diffusivity parameters allows for substantial flexibility in this regard; for
a given ion charge state, the curve in parameter space (the transition-critical R versus M0) is limited
by requirements on the accessibility of the intersection between the left and right branches in phase
space and the necessity that the slope through said intersection be real-valued.

5

Chapter 4

Further Calculations

4.1 Conductivity Models

The general format for a model of electron conductivity is as follows:

κe = κ0

Te

5

2

log Λ
(4.1)

A dependence on electron temperature is shown explicitly. The logarithmic term in the denominator may be
evaluated in one of several ways. A common treatment is to take its value as constant, since the expression
varies weakly with temperature and density; however, xRage allows for a range of variable treatments of
the term. The Coulomb log – and its counterpart Spitzer log, which may be alternately applied – will be
discussed in depth further in this report.

4.1.1 Zel’dovich and Raizer

The electron conductivity model of Zel’dovich and Raizer[5], introduced here for comparison with the treat-
ments of the nonlinear model and xRage, is presented in the form

κe =
ξ

Z

k
7

2

e4 m
1

2

e

T ◦

e

5

2

log Λ
. (4.2)

Note that this model shows a dependence on ion charge state, Z. The nonlinear model of Jaffrin and
Probstein is formulated exclusively for the charge state of one, corresponding with monatomic hydrogen;
therefore, this comparison model will be evaluated at that state.

We may first evaluate the unitless prefactor term ξ, following the discussion in the text:

ξ = ξ[Z] (4.3)

ξ[1] = 0.950 (4.4)

Continuing with the collocation and combination of known parameters, the following group is common to
several of our models for conductivity and is numerically evaluated here:

k
7

2

e4 m
1

2

e

= 1.9249634 · 10−5 (4.5)

The units of this expression are [erg

cm·s·K3.5]. It is important to note that xRage operates in electronvolt
temperatures, so this coefficient will need to be restated for input into that code.

6

Combining the previous results, we yield a relation of the expected form;

κe = 1.8287153 · 10−5
T ◦

e

5

2

log Λ
. (4.6)

For comparison with, and input into, the xRage package, we multiply this expression by a factor of the
Boltzmann constant. An equivalent electron conductivity model, keyed to temperature units of eV, is

κe = 3.0785139 · 109
Te

5

2

log Λ
. (4.7)

4.1.2 Jaffrin and Probstein

The authors present the following expressions for, respectively, the electron and ion conductivities and the
shear viscosity coefficient of a plasma of monatomic hydrogen:

κe =
κi2 σ

5

2

ǫ
, (4.8)

κi2 =
45k

16mi

µ′′

i2, (4.9)

µ′′

i2 =
5

6

√

mi

π

(kTi)
5

2

e4 log Λ
. (4.10)

Thus, we show the electron conductivity incorporated by the reduced model of Jaffrin and Probstein to be

κe =
225

96π
1

2

k
7

2

e4m
1

2

e

T ◦

e

5

2

log Λ
. (4.11)

In an analysis similar to that of the previous case, we evaluate the known parameters:

κe = (1.3223193) (1.8287153 · 10−5)
T ◦

e

5

2

log Λ
, (4.12)

κe = 2.5454163 · 10−5
T ◦

e

5

2

log Λ
, (4.13)

which remain in units of [erg

cm·s·K3.5]. We conclude by converting this into the eV form:

κe = 4.2850300 · 109
Te

5

2

log Λ
. (4.14)

4.1.3 Generalized Spitzer: xRage

The default model that calculates electron conduction within xRage employs a form of the generalized
Spitzer coefficient as follows:

κe =
8

π

3

2 k
7

2

e4 m
1

2

e

1

1 + 3.3/Z

Te

5

2

Z log Λ
. (4.15)

7

If we take, as we have in the previous cases, Z = 1, this model reduces to an expression with familiar terms,

κe = (0.9450216)(1.8287153 · 10−5)
T ◦

e

5

2

log Λ
, (4.16)

κe = 1.7281754 · 10−5
T ◦

e

5

2

log Λ
, (4.17)

in units of [erg

cm·s·K3.5]. The result within xRage will be processed in units of eV, and ought to appear as
follows:

κe = 2.9092620 · 109
Te

5

2

log Λ
. (4.18)

4.1.4 Simple Spitzer: xRage

The simple Spitzer conductivity model within xRage is a model equivalent to the general form for conduc-
tivity relations, (4.1), into which κ0 and log Λ are entered by the user. The manual suggests a value of order
[10−9] be entered for the κ0 prefactor, given units of [erg

cm·s·eV 3.5] that are consistent with those presented
in this section of the report. This would appear to be a clear typo, as all previous models have produced
results of the order [109]. Therefore, the model with the corrected prefactor appended stands as

κe = 3.0041640 · 109
Te

5

2

log Λ
. (4.19)

4.1.5 Review and Conclusions

Comparison of a wide range of electron conductivity models from the literature demonstrates their many
inherent similarities, and bolsters arguments for the validity of a representative calculation in xRage of the
reduced form of Jaffrin and Probstein. As the simple Spitzer conductivity model reviewed above allows for
the direct input of prefactor terms, it is trivial to flag that particular version of electron conductivity to be
employed by xRage and input its κ0 as that calculated for the Jaffrin and Probstein model and listed above.
It is worth noting that, while all four listed prefactor terms are on the same order of magnitude, it is the
Jaffrin and Probstein term that is a slight outlier. All other prefactors are, in units of [erg

cm·s·K3.5], roughly
equivalent to 3 · 109; their model suggests a κ0 greater than 4 · 109. It is this dissimilarity that demands
the employment of the simple Spitzer option in xRage for matching Jaffrin and Probstein results, as it has
already been demonstrated that the default and generalized model produces results on par with the other
conductivity models.

4.2 Electron-Ion Coupling

A general model for the electron-ion coupling is

γei = γ0 ρ2 Te
−

3

2 log Λ. (4.20)

Explicit dependence on electron temperature and density (alternately, number density) is shown. The
logarithmic term, once more a form of either the Coulomb or Spitzer logarithm, presents notable difficulty
in the representation of the reduced model in the full model of xRage. Jaffrin and Probstein make the
assumption that that function depends only weakly on changes in density and temperature and therefore
take it as a constant at the downstream value; xRage has no option available for a constant logarithmic term,

8

and therefore required direct modification to replicate the reduced model’s coupling term. At an initial Mach
number of 1.70, an elevation in the term of some 30% was observed across the shock using a variable model.
While this may be negligible in the sense of order of magnitude, as was previously assumed, it is worth noting
that the logarithmic value peaked and declined quite rapidly about the shock; furthermore, alterations to
transient solutions were observed after forcing the logarithm to remain constant. Their significance is not
yet clear.

4.2.1 Jaffrin and Probstein

The equation for electron energy, as presented in (3.14) of the authors’ 1964 paper, contains the term

√
2

ǫ∆s(σ − τ)

M1 l1 ω ωeσ
3

2

, (4.21)

in which ǫ is the square root of the ratio of electron mass to ion mass, and ∆s is the shock thickness. σ and τ
are the dimensionless electron and ion temperatures, respectively, scaled against the downstream equilibrium
temperature T1. ωe and ω are the electron and ion velocities, respectively, and are likewise scaled against
the downstream equilibrium velocity u1.

We are concerned with this term because of its similarity to the implementation of electron-ion coupling
in xRage and other models of 2T and 3T plasma flow. Note that there is present a relation (σ − τ),
the difference in dimensionless electron and ion temperatures. Therefore, we can consider the collection of
terms multiplying this relation to be a measure of the ‘coupling strength’ between electrons and ions in the
solution. Replacing the shock thickness ∆s with its appropriate value for the relaxation layer with which we
are concerned – that dominated by the dissipative mechanisms of electron thermal conduction and electron-
ion energy interchange in the limit of small Debye length with respect to mean free path – we arrive at the
expression

γei ∝
√

2
T1

M1 ω ωeσ
3

2

. (4.22)

Given that the ω terms in the denominator are equivalent to the inverse of the dimensionless number density
terms, which are themselves proportional to the mass densities of the constituents, we have recovered an

expression that contains the requisite [ρ2 · Te
−

3

2] of our general coupling form, (4.20) above.

In manipulating this expression into a fully dimensioned form, we may return to (2.17) in the 1964 paper of
Jaffrin and Probstein, an earlier phase of the derivation. There we encounter the following relation:

4Ak
√

πc3(me + mi)
(Te − Ti), (4.23)

which has the difference in constituent temperatures we expect to be linked to a coupling term.

That relation can be expanded into a form that resembles the general form of (4.20). Given the definitions
for A and c,

A =
4π neni (me + mi) e4 log Λ

memi

, (4.24)

c =
√

2kTe/me + 2kTi/mi, (4.25)

that relation expands to

γei =
16kπ neni (me + mi) e4 log Λ

√
πc3memi(me + mi)

, (4.26)

γei =
4
√

2πe4 neni log Λ

memi

1
√

k(Te/me + Ti/mi)
3

2

. (4.27)

9

Note that we can here make the reasonable assumption that the term (Te/me + Ti/mi) in the denominator
ought to be dominated by the electron temperature term, as the electron mass is over three orders of
magnitude larger than the corresponding ion mass. Having made this adjustment, we arrive a final expression

γei =
4
√

2πe4 neni log Λ

memi

(

me

Te

)
3

2 1
√

k
. (4.28)

4.2.2 ‘Optional Electron-Ion Coupling’: xRage

xRage incorporates, as a non-default option, a form of electron-ion coupling analogous to the model retrieved
from an analysis of Jaffrin and Probstein. With an ion charge state of 1, again equivalent to that for
monatomic hydrogen, the version in the code simplifies to

γei =
4
√

2πe4 neni log Λ

memi

(

me

Te

)
3

2

. (4.29)

We immediately note a close agreement with the coupling term of the reduced model. However, there is
a potentially troubling factor of the Boltzmann constant in the denominator of the latter coupling relation
that is not present in the former. In an attempt to resolve this discrepancy, recall that the temperature units
of Jaffrin and Probstein are presumably Kelvin, while the units of xRage are typically eV . The Boltzmann
constant, k, can be used to convert between those systems. As the γei term must be multiplied against a

temperature difference, the units of the outlier term –
[

Temperature

Energy

]
1

2

, and after substitution
[

K
eV

]
1

2 – will

properly convert the remaining temperature units, which will be of the form T ◦

e
1−

3

2 and thus
[

1

K

]
1

2

4.2.3 Review and Conclusions

Unlike in the case of conductivity, xRage has no ‘simple model’ functionality for coupling into which a
prefactor and logarithmic term may be entered. However, this analysis has shown that there does exist a
coupling model in xRage that ought to produce equivalent results to that employed by Jaffrin and Probstein,
for an equivalent logarithmic term. All other terms in the calculation of γei through those two methods are
directly comparable.

4.3 Coulomb and Spitzer Logarithms

The logarithmic term common to both the electron-ion coupling and electron conductivity relations is referred
to as either the Coulomb logarithm or the Spitzer logarithm; it relates to the cross-section for “Coulomb
collisions” between particles. A wide range of expressions are available. Note that Jaffrin and Probstein
assume that the differences in the logarithmic term with density and temperature variance are negligible,
and therefore employ a constant value taken at the downstream condition. A constant, user-specified input
is available for the term in xRage’s simple Spitzer conductivity. No corresponding option exists for the
electron-ion coupling, however. To replicate the Jaffrin and Probstein model in xRage, it was therefore
necessary to modify the code’s source to allow for a constant Coulomb logarithm.

10

Chapter 5

Conclusions

The linear model of Masser, Wohlbier, and Lowrie produced results very similar to those of xRage, and shows
strong potential for service in future verification studies. A range of test cases at initial Mach numbers of
1.19, 1.40, and 1.70 demonstrated convergence; the ‘norm’ considered was that of maximum ion temperature.
In order to reproduce the displacement scaling of the xRage results in the linear reduced model’s script, it
was necessary to employ specific heats and constant electron conductivities equivalent to those expressed in
the input deck. Following that, temperature profiles versus displacement were also convergent. Static grids
and AMR (adaptive mesh) grids were employed in this study. AMR grids allowed for enhanced resolution
about the shock face, but required significantly more wall time to produce steady-state solutions.

The nonlinear model of Jaffrin and Probstein did not produce results comparable to the model of xRage.
Initially, the input deck was set to employ the default relations for coupling and conductivity, which were not
in complete agreement with the relations of the nonlinear model. After an analysis of each parameter and a
wide range of potential equations for its expression, the simple Spitzer conductivity model and the ‘Optional
Electron-Ion Coupling’ model were selected for their demonstrated similarity with the parameters of Jaffrin
and Probstein. The simple Spitzer prefactor term was calculated with reference to several published models,
and ultimately set to be equal to that determined for the Jaffrin and Probstein conductivity. The Coulomb
logarithm was calculated again with reference to the nonlinear model, and found to be on the order of 1 for
the case of the atypically dense plasmas here studied.

Examining solutions with variable coefficients in xRage, it appears that the electron-ion coupling term
is significantly stronger than that of the nonlinear model. Parameters relating to the conductivity and
coupling were manually changed in the input deck to attempt a diagnostic of this effect, and it appeared
that the product of the coupling term and conductivity were several times greater in xRage’s determination
than in Jaffrin and Probstein’s. Neither term is explicitly present in the ordinary differential equations of
that reduced model, and it is possible that the simplifications made in attaining that model altered the
conductivity and coupling relations as they were initially stated.

The performance of verification tests of xRage against the linear model is promising. However, the cur-
rent method for comparison between the nonlinear model and default xRage, with variable coupling and
conductivity, requires further study. Instead of attempting to retrofit the source code to match a particular
reduced model, it may prove more fruitful to add the functionality of variable parameters into a linear model,
like that of Masser, Wohlbier, and Lowrie. In fact, initial tests of that model with a coupling parameter R
that adjusts at each spacial step have produced results closer to those of xRage than the nonlinear model
of Jaffrin and Probstein. However, the equations of that model must be derived from their governing form
without assumptions of constant value before such a test can be comprehensive.

11

Chapter 6

Acknowledgments

I would like to thank my mentor, Thomas Masser, for his invaluable advice and assistance in directing this
summer research project. I would also like to acknowledge the contributions of my research partner, Samuel
Shaner, particularly as regards solutions to the linear reduced model. Finally, I must note my gratitude to
Scott Runnels, the workshop manager, for his excellent direction of this program – and also the members of
the LANL community who volunteered their time to present to, interact with, educate, and accommodate
me and my fellow students.

12

Bibliography

[1] W. Fickett and W.C. Davis, Detonation: Theory and experiment, University of California Press, 1979.

[2] M. Jaffrin and R. Probstein, Structure of a plasma shock wave, The Physics of Fluids (1964).

[3] D. Mihalas and B. Mihalas, Foundations of radiation hydrodynamics, Oxford University Press, 1984.

[4] J. Wohlbier T. Masser and R. Lowrie, Shock wave structure for a fully ionized plasma, Shock Waves
(2011).

[5] Y.B. Zeldovich and Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena,
Academic Press, 1967.

13

Verification Study of Planar Shocks in Dense
Plasmas

Samuel Shaner1,2 and Thomas Masser1

1Los Alamos National Laboratory, Computational Physics and Methods (CCS-2)
2Massachusetts Institute of Technology, Department of Nuclear Science and Engineering

Abstract

Planar shock waves in fully ionized plasmas can be
characterized by their spatial electron and ion temper-
ature profiles. These profiles are highly dependent on
several properties of the ionized flow: density, mach
number, ion atomic number, electron-ion coupling, and
electron thermal conductivity. In this project, we are in-
vestigating the effect of these parameters on the bound-
ary between continuous and discontinuous shock flows
in dense plasmas. We are using two models to con-
duct this study: a steady-state two-temperature model
developed by Masser et. al. and the three-temperature
hydrodynamics model implemented in LANL’s flagship
multiphysics code, xRage. Through this ongoing anal-
ysis we hope to further refine the bounding conditions
between continuous and discontinuous shock flows in
dense plasmas and verify the numerical simulation for
shocks in dense plasmas produced by xRage.

Introduction

Shock waves in plasmas are important for several
applications including modeling of ICF pellet implo-
sion and certain astrophysical systems. Experimental
studies of shock waves are expensive and difficult or
impossible to perform which necessitates the use of
computational methods. Scientist at SAIC and Los
Alamos National Laboratory have co-developed xRage,
a generalized three-temperature, multi-material Eule-
rian hydrodynamics code, to model shocks in a wide
range of materials. In the present study we focus on
modeling planar shocks in dense plasmas using a simple
two-temperature fully ionized plasma model and com-
paring the results to xRage.

The two-temperature model used in our paper is
motivated by the earlier work done by several scien-
tists in the 1950’s and 1960’s [1-4]. Zeldovich studied
strong shock waves in air using a two-temperature elec-
trically neutral plasma model [1]. Shafranov computed
the shock profiles for a specific model of hydrogen with
shocks of varying strength [2]. Imshennik analyzed a
generalization of Shafranov’s model to determine a crit-
ical shock strength between continuous (fully dispersed)

and discontinuous (embedded hydrodynamic shock) pro-
files [3]. Jaffrin and Probstein considered similar models
with consideration of the effects of charge separation and
electron viscosity [4]. In this study, we build on these
models and focus only on the interactions of the elec-
trons and ions within a shock moving through a fully
ionized gas. Masser et. al. studied the parameter space
of stationary shock waves in dense plasmas using this
model and their paper is used as a basis for this study
[5]. This model assumes that strong Coulomb interac-
tions keep the electrons and ions rigidly coupled, so that
the plasma remains electrically neutral. Additionally,
it neglects all radiative effects and treat both the elec-
tron diffusivity and electron-ion coupling coefficients as
constants. While the simplifications of this model make
it invalid for studying real shocks, the solutions keep
intact the important mathematical characteristics and
allow us to use Eulerian numerical integration schemes
to rapidly solve the equations and produce results.

Model and Methods

The governing equations for our model consist of the
Euler equations with heat transfer (1-3) along with the
electron advection equation which serves to keep the
electrons and ions coupled (4):

∂tρ+ ∂x(ρυ) = 0 (1)

∂t(ρυ) + ∂x(ρυ2 + p) = 0 (2)

∂t(ρE) + ∂x(υ(ρE + p)) = ∂x(κe∂xTe) (3)

∂t(ρee) + ∂x(ρυee) + pe∂xυ = γei(Ti − Te) + ∂x(κe∂xTe)
(4)

Where ρ is the density, υ is velocity, p is pressure,
E is energy, ee is specific electron energy, T is energy
in eV, κe is the electron conductivity, and γei is the
electron-ion coupling term. To reduce the number of
unknowns to the equal the number of equations, we
apply several closure relations

γ-law equation of state

p = ρe(γ − 1)

Z split of specific heat capacities

e = CυT,
Cυ,i
Cυ

=
1

Z + 1
,

Cυ,e
Cυ

=
Z

Z + 1

1

We solve the governing equations by considering the
steady-state case. The time derivatives drop out from
the governing equations to yield a set of coupled ODEs:

d(ρυ)

dx
= 0 (5)

d(ρυ2 + p)

dx
= 0 (6)

d[υ(ρE + p)]

dx
=
κe

dTe

dx

dx
(7)

d(ρυee)

dx
+ pe

dυ

dx
= γei(Ti − Te) +

κe
dTe

dx

dx
(8)

We can then apply the closure relations, combine
equations, and nondimensionalize variables to yield a
set of two autonomous, coupled ODEs:

2κe(γ − 1)

γ + 1

dΘe

dx
= (1 − η)(η − η1) (9)

2κe(γ − 1)

γ + 1

dη

dx
= −ηR

(
Z + 1

Z

)(
Θe − Θc2

e

Θe − Θc1
e

)
(10)

Where the new terms represent nondimensional
quantities:

η − velocity
Θe − electron temperature
R − coupling parameter

The nonlinear system can produce a discontinuity
(an embedded hydrodynamic shock) in the ion temper-
ature as a function of position. This discontinuity is
found by integrating a thermodynamically equivalent
form of the governing equations around an infinitesimal
domain surrounding the shock. The jump in entropy
(and ion temperature) is motivated by the assumption
of a zero electron entropy jump in the case of vanishing
electron-ion coupling and electron heat conduction. The
discontinuity condition can be simplified to the following
transcendental equation:

Θe(γ−1)
γ − 1

γ + 1
log

(
ηL
ηR

)
= (ηL−ηR)

(
1 + η1

2
− ηL + ηR

2

)
(11)

In this study, we have written a matlab code to solve
for the electron temperature profile over a shock by in-
tegrating from the steady state conditions. Addition-
ally, we have written a parallel run script to execute
the code at many points in the parameter space to de-
termine the bounding curve that separates continuous

from discontinuous solutions in region 2 (green) of fig-
ure 1. Pending LA-UR approval, the source code and
documentation will be put on Samuel Shaner’s github
account under the project title shock analysis (LINK).
The solution procedure for generating temperature pro-
files of shocks is as follows:

1. Determine the upstream (initial) dimensionless ve-
locity and ion temperature (η1, Θ1) given an input
Mach number, M0, and ionization number, Z.

2. Determine what region (see figure 1) the shock is
in based on the input Mach number

3. If shock is in region 1 (green):

• Evaluate dΘe

dη at η = 1 (the upstream state).

• Determine Θe,ε, Θe a short distance from the
downstream state.

• Integrate in the +x direction from the state
(η,Θe)ε near the (1,Θ0), the upstream state,
to near (η1, Θ1), the downstream state.

If shock is in region 2 or 3 (green or blue):

• Evaluate dΘe

dη at η = 1 (the upstream state).

• Determine Θe,ε, Θe near both end states.

• Integrate in the +x direction from the state
(η,Θe)ε near the (1,Θ0), the upstream state,
until the η value corresponding to the inter-
section of Θc1

e and Θc2
e is reached.

• Integrate in the −x direction from a state (η1,
Θ1), the downstream state, until the η value
corresponding to the intersection of Θc1

e and
Θc2
e is reached.

• If the solution curves intersect at the intersec-
tion of Θc1

e and Θc2
e , the solution is continu-

ous. Otherwise, search through values of Θe

and corresponding ηR and ηL until the shock
discontinuity condition is reached. Note the
ηR and ηL values.

• Connect the two solution curves to create a
continuous solution for Θe vs. x.

4. Use the balance equation below to find the ion
temperature profile.

Θi−Θe = (Z+1)((1+γM2
0)η−γM2

0 η
2−Θe) (12)

Where γ is the ratio of heat capacities (assumed
to be 5/3).

2

http://www.github.com/samuelshaner

Figure 1: Solution parameter space for a H1

plasma. The blue region contains only continuous so-
lutions. The green region includes both continuous
solutions (above the black curve) and discontinuous so-
lutions (below the black curve). The red region contains
only discontinuous solutions. The black circles represent
the shock conditions for shock temperature profiles in
figures 2-5.

Results

Verification Study

In the present study we considered contrived plasma
shocks with constant electron conductivity, electron-ion
coupling, and no radiative heat transfer. We present
four shocks, one in each end region and two in the mid-
dle, green region of the parameter space (figure 1) to
demonstrate our parameter space mapping and to verify
the xRage solutions. To give some historical context,
we present this parameter space plot and emphasize the
different regions because they differ from the previous
studies conducted with this model [1-4]. These older
studies suggest that the parameter space only contains
2 regions, one being the blue region and the other being
the combined green and red regions, where the continu-
ity of the solution only depends on the Mach number.
Upon further investigation we have found that there is
an intermediate region (the green region) where the con-
tinuity of the solution depends on both Mach number
and coupling parameter (R). We present the ion tem-
perature profiles for the four conditions shown in figure
1 below to demonstrate this finding. The ion tempera-
ture profiles are shown because they most clearly show
discontinuous solutions. Temperature profiles were gen-
erated with both our two-temperature model and with
xRage and by comparing the models we are verifying
the solutions that xRage outputs.

We begin with the left most point at (Mach =
1.05, R = 10). The shock at this condition is shown
in Figure 2 below and we clearly see a continuous pro-
file as suggested by our model and the previous models.
Additionally, the xRage and 2T model temperature pro-
files line up almost exactly on top of each other. This
confirms that xRage is producing the correct profile at
this condition.

Figure 2: Ion temperature profiles for a shock with
R = 10 and M0 = 1.05.

Now let’s look at the cases the in green region where
our model and the previous models disagree. Figure 3
shows the low R value point at (Mach = 1.4, R = 40).
The ion temperature profile for both rage and our 2T
model show discontinuous solutions and line up closely.

Figure 3: Ion temperature profiles for a shock with
R = 1 and M0 = 1.4.

As discussed, the older models [1-4] predict that the
continuity of the solution depends only on Mach num-
ber. Therefore, we would expect that raising the cou-
pling parameter, R, at a constant Mach number of 1.4
would not affect the continuity/discontinuity of the so-
lution. Figure 4 shows the ion temperature profile for
a shock at (Mach = 1.4, R = 100), which is above the
continuous/discontinuous boundary curve in the green
region. Both xRage and our 2T model show continu-

3

ous solutions and again agree quite well. This behavior
speaks to the validity of our model and confirms that
there is this intermediate region where the continuity of
the temperature profiles depend on both Mach number
and coupling parameter.

Figure 4: Ion temperature profiles for a shock with
R = 100 and M0 = 1.4.

For good measure, we included an ion temperature
plot at a high R value to confirm that both xRage and
our 2T model produce discontinuous shocks. As seen in
Figure 5 at the condition of (Mach = 1.8, R = 10) both
rage and our 2T model produce discontinuous profiles
and line up almost exactly on top of each other.

Figure 5: Ion temperature profiles for a shock with
R = 10 and M0 = 1.8.

The four ion temperature profiles clearly show that
both xRage and our 2T model produce shock tempera-
ture profiles that adhere to the continuity/discontinuity
behavior predicted in our model and the profiles agree
quite well. We have run many more trials in the pa-
rameter space and they all show the same behavior as
long as xRage simulations are carried out with a large
enough domain to fully capture the equilibrium solu-
tions on either side and to long enough times to reach
the steady state solution.

xRage Solution Convergence

While our simple 2T model solves for the steady
state case, xRage solves the time dependent problem.
To make the xRage solution converge with the 2T so-
lution, simulations must be run to long enough times
and the cell width must be small enough. As seen in
figures 3 and 5, some of the shocks can have very sharp
temperature spikes near the shock discontinuity. This is
inherently difficult to model when the cell size is finite
and the shock may span only a few cells. Figure 6 below
shows the converged ion temperature spikes for the R
= 10 and M0 = 1.8 case with cell sizes (in µm) of:
(0.4, 0.2, 0.1, 0.05, and 0.025) along with the 2T model
solution shown in blue (the innermost curve). As the
cell size decreases, we see that the shock width begins to
decrease and the ion temperature spike gets sharper and
closer to the 2T model value. This behavior was seen in
all shocks with sharp discontinuities and demonstrates
that users must keep a close eye on the cell width when
simulating discontinuous shocks.

Figure 6: Zoomed in view of the ion temperature
peak for the R = 10 and M0 = 1.8 case with varying
Eulerian cell sizes.

In addition to the cell width, the simulation time
must be long enough so the temperature profile reaches
the steady state solutions. While we have not performed
a rigorous investigation of the convergence to steady
state, we will mention that, in general, the simulation
time to reach steady state follows a trend of:

time α
R

M0
(13)

4

Conclusions and Future Work

In the present study, we have verified that xRage
produces the correct temperature profiles for contin-
uous and discontinuous shocks in dense plasmas with
constant electron conductivities and electron-ion cou-
pling parameters. Additionally, we have demonstrated
that the parameter space for continuous/discontinuous
solutions has three regions, instead of two as predicted
by older models. The parameter space consists of a low
Mach number region with only continuous solutions, a
high Mach number region with only discontinuous solu-
tions, and an intermediate Mach number region where
the solution continuity depends on both Mach number
and coupling parameter.

The verification study herein serves as an ”eyeball
norm” of the solutions. Future verification work on the
shock solutions of xRage should go into more depth by
performing a rigorous numerical analysis of the solutions
that xRage produces. Additionally, our model should
be extended to included more realistic models for elec-
tron conductivity and electron-ion coupling parameter
as well as consideration of radiative heat transfer.

Acknowledgements

I would like to thank Thomas Masser for providing
direction and support on this project. I would also like
to thank Scott Runnels for organizing the 2012 Compu-
tational Physics Summer Workshop. Helpful discussions
with William Hoey are gratefully acknowledged. Fund-
ing was provided by the Advanced Scientific Comput-
ing Program at Los Alamos National Laboratory under
charge code JPDJ.

5

References

[1] V. S Imshennik Shock wave structure in a dense high–temperature plasma Soviet Physics JETP, 15(1):167–174,
1962

[2] M. Y. Jaffrin and R. F. Probstein Structure of a plasma shock wave Physics of Fluids, 7(10):1658–1674, 1964

[3] V. D. Shafranov The structure of shock waves in a plasma Soviet Physics JETP, 5(6):1183–1188, 1957

[4] Y. B. Zel’dovich Shock waves of large amplitude in air Soviet Physics JETP, 5(5):919–927, 1957

[5] T. O. Masser, J. G. Wohlbier, R. B. Lowrie Shock structure for a fully ionized plasma Shock Waves, (2011)
21:367-381

6

2012 Computational Physics Student Summer Workshop: Final Reports

